Use the Laplace transform to solve the given initial-value problem.
dy/dt  − y = 1,    y(0) = 0
y(t) =
"\\bigstar" Using laplace transform
Theorem - L{f'(t)=sf(s)-f(0)
We have
L("dy\\over dt" ) - L (y) = L(1)
sY(s) - y(0)- Y(s)= "1\\over s"
(s-1)Y(s)="1\\over s"
Y(s)="1\\over s(s-1)"
Where Y(s) = L{y(t)}
"\\bigstar" In order to find y(t) , we find inverse laplace transform of Y(s) , since
"1\\over s(s-1)" = "1\\over s-1" - "1\\over s"
Now , we have using theorem a= 1 and a=0
y(t) = L-1"1\\over s(s-1)" =
=L-1"1\\over s-1" - L-1"1\\over s"
= et-1
"\\boxed{y(t)=e^t-1}"
Comments
Leave a comment