Use the Laplace transform to solve the given initial-value problem.
y' − y = 2 cos(4t),  y(0) = 0
y(t) =
Let us use the Laplace transform to solve the given initial-value problem:
"y' \u2212 y = 2 \\cos(4t),\\ y(0) = 0".
Taking into account that "y(t)\\to Y(p),\\ y'(t)\\to pY(p)-y(0), \\cos 4t\\to\\frac{p}{p^2+16}", we have the equation:
"pY(p)-Y(p)=\\frac{2p}{p^2+16}" or "Y(p)(p-1)=\\frac{2p}{p^2+16}" or "Y(p)=\\frac{2p}{(p-1)(p^2+16)}".
It follows that "\\frac{2p}{(p-1)(p^2+16)}=\\frac{A}{p-1}+\\frac{Bp+C}{p^2+16}" and hence
"2p=Ap^2+16A+Bp^2+Cp-Bp-C"
Therefore, we have the following system:
"\\begin{cases}\nA+B=0\\\\\nC-B=2\\\\\n16A-C=0\n\\end{cases}"
"\\begin{cases}\nA+C=2\\\\\nB=C-2\\\\\n16A-C=0\n\\end{cases}"
"\\begin{cases}\n17A=2\\\\\nB=C-2\\\\\nC=16A\n\\end{cases}"
"\\begin{cases}\nA=\\frac{2}{17}\\\\\nB=C-2\\\\\nC=\\frac{32}{17}\n\\end{cases}"
"\\begin{cases}\nA=\\frac{2}{17}\\\\\nB=-\\frac{2}{17}\\\\\nC=\\frac{32}{17}\n\\end{cases}"
We conclude that "Y(p)=\\frac{2}{17}\\frac{1}{p-1}-\\frac{2}{17}\\frac{p}{p^2+16}+\\frac{32}{17}\\frac{1}{p^2+16}", and using "\\frac{1}{p-1}\\to e^t,\\ \\frac{4}{p^2+16}\\to\\sin 4t" we have the solution:
"y(t)=\\frac{2}{17}e^t-\\frac{2}{17}\\cos 4t+\\frac{8}{17}\\sin 4t."
Comments
Leave a comment