Let us use the Laplace transform to solve the given initial-value problem:
y ′ − y = 2 cos ( 4 t ) , y ( 0 ) = 0 y' − y = 2 \cos(4t),\ y(0) = 0 y ′ − y = 2 cos ( 4 t ) , y ( 0 ) = 0 .
Taking into account that y ( t ) → Y ( p ) , y ′ ( t ) → p Y ( p ) − y ( 0 ) , cos 4 t → p p 2 + 16 y(t)\to Y(p),\ y'(t)\to pY(p)-y(0), \cos 4t\to\frac{p}{p^2+16} y ( t ) → Y ( p ) , y ′ ( t ) → p Y ( p ) − y ( 0 ) , cos 4 t → p 2 + 16 p , we have the equation:
p Y ( p ) − Y ( p ) = 2 p p 2 + 16 pY(p)-Y(p)=\frac{2p}{p^2+16} p Y ( p ) − Y ( p ) = p 2 + 16 2 p or Y ( p ) ( p − 1 ) = 2 p p 2 + 16 Y(p)(p-1)=\frac{2p}{p^2+16} Y ( p ) ( p − 1 ) = p 2 + 16 2 p or Y ( p ) = 2 p ( p − 1 ) ( p 2 + 16 ) Y(p)=\frac{2p}{(p-1)(p^2+16)} Y ( p ) = ( p − 1 ) ( p 2 + 16 ) 2 p .
It follows that 2 p ( p − 1 ) ( p 2 + 16 ) = A p − 1 + B p + C p 2 + 16 \frac{2p}{(p-1)(p^2+16)}=\frac{A}{p-1}+\frac{Bp+C}{p^2+16} ( p − 1 ) ( p 2 + 16 ) 2 p = p − 1 A + p 2 + 16 Bp + C and hence
2 p = A p 2 + 16 A + B p 2 + C p − B p − C 2p=Ap^2+16A+Bp^2+Cp-Bp-C 2 p = A p 2 + 16 A + B p 2 + Cp − Bp − C
Therefore, we have the following system:
{ A + B = 0 C − B = 2 16 A − C = 0 \begin{cases}
A+B=0\\
C-B=2\\
16A-C=0
\end{cases} ⎩ ⎨ ⎧ A + B = 0 C − B = 2 16 A − C = 0
{ A + C = 2 B = C − 2 16 A − C = 0 \begin{cases}
A+C=2\\
B=C-2\\
16A-C=0
\end{cases} ⎩ ⎨ ⎧ A + C = 2 B = C − 2 16 A − C = 0
{ 17 A = 2 B = C − 2 C = 16 A \begin{cases}
17A=2\\
B=C-2\\
C=16A
\end{cases} ⎩ ⎨ ⎧ 17 A = 2 B = C − 2 C = 16 A
{ A = 2 17 B = C − 2 C = 32 17 \begin{cases}
A=\frac{2}{17}\\
B=C-2\\
C=\frac{32}{17}
\end{cases} ⎩ ⎨ ⎧ A = 17 2 B = C − 2 C = 17 32
{ A = 2 17 B = − 2 17 C = 32 17 \begin{cases}
A=\frac{2}{17}\\
B=-\frac{2}{17}\\
C=\frac{32}{17}
\end{cases} ⎩ ⎨ ⎧ A = 17 2 B = − 17 2 C = 17 32
We conclude that Y ( p ) = 2 17 1 p − 1 − 2 17 p p 2 + 16 + 32 17 1 p 2 + 16 Y(p)=\frac{2}{17}\frac{1}{p-1}-\frac{2}{17}\frac{p}{p^2+16}+\frac{32}{17}\frac{1}{p^2+16} Y ( p ) = 17 2 p − 1 1 − 17 2 p 2 + 16 p + 17 32 p 2 + 16 1 , and using 1 p − 1 → e t , 4 p 2 + 16 → sin 4 t \frac{1}{p-1}\to e^t,\ \frac{4}{p^2+16}\to\sin 4t p − 1 1 → e t , p 2 + 16 4 → sin 4 t we have the solution:
y ( t ) = 2 17 e t − 2 17 cos 4 t + 8 17 sin 4 t . y(t)=\frac{2}{17}e^t-\frac{2}{17}\cos 4t+\frac{8}{17}\sin 4t. y ( t ) = 17 2 e t − 17 2 cos 4 t + 17 8 sin 4 t .
Comments