Question #177429

Use the Laplace transform to solve the given initial-value problem.

y' − y = 2 cos(4t),  y(0) = 0

y(t) =


1
Expert's answer
2021-04-13T13:29:10-0400

Let us use the Laplace transform to solve the given initial-value problem:

yy=2cos(4t), y(0)=0y' − y = 2 \cos(4t),\ y(0) = 0.


Taking into account that y(t)Y(p), y(t)pY(p)y(0),cos4tpp2+16y(t)\to Y(p),\ y'(t)\to pY(p)-y(0), \cos 4t\to\frac{p}{p^2+16}, we have the equation:


pY(p)Y(p)=2pp2+16pY(p)-Y(p)=\frac{2p}{p^2+16} or Y(p)(p1)=2pp2+16Y(p)(p-1)=\frac{2p}{p^2+16} or Y(p)=2p(p1)(p2+16)Y(p)=\frac{2p}{(p-1)(p^2+16)}.


It follows that 2p(p1)(p2+16)=Ap1+Bp+Cp2+16\frac{2p}{(p-1)(p^2+16)}=\frac{A}{p-1}+\frac{Bp+C}{p^2+16} and hence


2p=Ap2+16A+Bp2+CpBpC2p=Ap^2+16A+Bp^2+Cp-Bp-C


Therefore, we have the following system:


{A+B=0CB=216AC=0\begin{cases} A+B=0\\ C-B=2\\ 16A-C=0 \end{cases}


{A+C=2B=C216AC=0\begin{cases} A+C=2\\ B=C-2\\ 16A-C=0 \end{cases}


{17A=2B=C2C=16A\begin{cases} 17A=2\\ B=C-2\\ C=16A \end{cases}


{A=217B=C2C=3217\begin{cases} A=\frac{2}{17}\\ B=C-2\\ C=\frac{32}{17} \end{cases}


{A=217B=217C=3217\begin{cases} A=\frac{2}{17}\\ B=-\frac{2}{17}\\ C=\frac{32}{17} \end{cases}


We conclude that Y(p)=2171p1217pp2+16+32171p2+16Y(p)=\frac{2}{17}\frac{1}{p-1}-\frac{2}{17}\frac{p}{p^2+16}+\frac{32}{17}\frac{1}{p^2+16}, and using 1p1et, 4p2+16sin4t\frac{1}{p-1}\to e^t,\ \frac{4}{p^2+16}\to\sin 4t we have the solution:


y(t)=217et217cos4t+817sin4t.y(t)=\frac{2}{17}e^t-\frac{2}{17}\cos 4t+\frac{8}{17}\sin 4t.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS