Question #177556

Solve the differential equation by an appropriate method. y''+2y'=x^2+4e^2x


1
Expert's answer
2021-04-15T07:19:41-0400

We have given the differential equation,


y+2y=x2+4e2xy''+2y'=x^2+4e^{2x}


(D2+2D)y=x2+4e2x(D^2+2D)y = x^2 + 4e^{2x}

Auxiliary equation : m2+2m=0m^2 + 2m = 0

m(m+2)=0m(m+2) = 0

m=0,m=2m = 0, m = -2

Hence, C.F=C1+C2e2xC.F = C_1 + C_2e^{-2x}


P.I=1D2+2D4e2x+1D2+2Dx2P.I = \dfrac{1}{D^2+2D}4e^{2x} + \dfrac{1}{D^2+2D}x^2


=4e2x22+2(2)+12D[1+D2]1x2= \dfrac{4e^{2x}}{2^2+2(2)} + \dfrac{1}{2D}[1+\dfrac{D}{2}]^{-1}x^2


=4e2x8+12D[1D2+D24]x2= \dfrac{4e^{2x}}{8} + \dfrac{1}{2D}[1-\dfrac{D}{2}+\dfrac{D^2}{4}]x^2


=4e2x8+[12D14+D8]x2= \dfrac{4e^{2x}}{8} + [\dfrac{1}{2D}-\dfrac{1}{4}+\dfrac{D}{8}]x^2


P.I=e2x2+x36x24+x4P.I = \dfrac{e^{2x}}{2} + \dfrac{x^3}{6} - \dfrac{x^2}{4} + \dfrac{x}{4}


Hence, complete solution of the differential equation is


y=C.F+P.Iy = C.F + P.I


y=C1+C2e2x+e2x2+x36x24+x4y = C_1 + C_2e^{2x} + \dfrac{e^{2x}}{2} + \dfrac{x^3}{6} - \dfrac{x^2}{4} + \dfrac{x}{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS