We have given the differential equation,
y′′+2y′=x2+4e2x
(D2+2D)y=x2+4e2x
Auxiliary equation : m2+2m=0
m(m+2)=0
m=0,m=−2
Hence, C.F=C1+C2e−2x
P.I=D2+2D14e2x+D2+2D1x2
=22+2(2)4e2x+2D1[1+2D]−1x2
=84e2x+2D1[1−2D+4D2]x2
=84e2x+[2D1−41+8D]x2
P.I=2e2x+6x3−4x2+4x
Hence, complete solution of the differential equation is
y=C.F+P.I
y=C1+C2e2x+2e2x+6x3−4x2+4x
Comments