A bike is accelerating in yz-plane with its speed given by ()
at
t(w2) +2 * u2: dvt)
= u2
= u3 * t(2+w3)+3*u3, subject to the initial conditions,
v,(0) = n2; v0) = n3. Determine its speed at later time
u2 = 4 + 0.3R, u3 = 2+ 0.4R, w2 = 0.5+ R,w3 = 1+ R, n2 = 3.1+ 0.2R, n3 = 4.1 + 0.1R, p1 = 5.4 + 0.2R
∂vy(t)∂t=u2⋅3tw2, ∂vz(t)∂t=u3⋅tw3+3\frac{\partial v_y(t)}{\partial t}=u_2\cdot3t^{w_2},\ \frac{\partial v_z(t)}{\partial t}=u_3\cdot t^{w_3}+3∂t∂vy(t)=u2⋅3tw2, ∂t∂vz(t)=u3⋅tw3+3
vy(0)=n2, vz(0)=n3v_y(0)=n_2,\ v_z(0)=n_3vy(0)=n2, vz(0)=n3
vy(t)=3u2tw2+1w2+1+n2v_y(t)=\frac{3u_2t^{w_2+1}}{w_2+1}+n_2vy(t)=w2+13u2tw2+1+n2 , vz(t)=u3tw3+1w3+1+n3v_z(t)=\frac{u_3t^{w_3+1}}{w_3+1}+n_3vz(t)=w3+1u3tw3+1+n3
vy(p1)=3(3+0.3R)(5.4+0.2R)2+0.3R2+0.3R+3.1+0.2Rv_y(p_1)=\frac{3(3+0.3R)(5.4+0.2R)^{2+0.3R}}{2+0.3R}+3.1+0.2Rvy(p1)=2+0.3R3(3+0.3R)(5.4+0.2R)2+0.3R+3.1+0.2R
vz(p1)=(5+0.4R)(5.4+0.2R)2+R2+R+4.1+0.1Rv_z(p_1)=\frac{(5+0.4R)(5.4+0.2R)^{2+R}}{2+R}+4.1+0.1Rvz(p1)=2+R(5+0.4R)(5.4+0.2R)2+R+4.1+0.1R
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment