A bike is accelerating in yz-plane with its speed given by ()
at
t(w2) +2 * u2: dvt)
at
= u2
= u3 * t(2+w3)+3*u3, subject to the initial conditions,
v,(0) = n2; v0) = n3. Determine its speed at later time
u2 = 4 + 0.3R, u3 = 2+ 0.4R, w2 = 0.5+ R,w3 = 1+ R, n2 = 3.1+ 0.2R, n3 = 4.1 + 0.1R, p1 = 5.4 + 0.2R
"\\frac{\\partial v_y(t)}{\\partial t}=u_2\\cdot3t^{w_2},\\ \\frac{\\partial v_z(t)}{\\partial t}=u_3\\cdot t^{w_3}+3"
"v_y(0)=n_2,\\ v_z(0)=n_3"
"v_y(t)=\\frac{3u_2t^{w_2+1}}{w_2+1}+n_2" , "v_z(t)=\\frac{u_3t^{w_3+1}}{w_3+1}+n_3"
"v_y(p_1)=\\frac{3(3+0.3R)(5.4+0.2R)^{2+0.3R}}{2+0.3R}+3.1+0.2R"
"v_z(p_1)=\\frac{(5+0.4R)(5.4+0.2R)^{2+R}}{2+R}+4.1+0.1R"
Comments
Leave a comment