Solve the Bessel's equation of order zero
y''(x)+(1/x)y'(x)+y(x)=0
With boundary conditions y'(0)=0, y(1)=1
Multiplying on x2
x2y"(x)+xy'(x)+x2y(x)=0
"y(x)=\\sum_{n=0}^{\\propto}a_nx^{r+n}" , for a not equal 0, x>0
"y'(x)=\\sum_{n=0}^{\\propto}a_n(r+n)x^{r+n-1}"
"y"(x)=\\sum_{n=0}^{\\propto}a_n(r+n)(r+n-1)x^{r+n-2}"
"y'(x)=\\sum_{n=0}^{\\propto}a_n(r+n)(r+n-1)x^{r+n}+\\sum_{n=0}^{\\propto}a_n(r+n)x^{r+n}+\\sum_{n=0}^{\\propto}a_nx^{r+n+2}"
"a_0r^2x^r+a_1(r+1)^2x^{r+1}+\\sum_{n=2}^{\\propto}(a_n(r+n)^2a_{n-2})x^{r+n}=0"
The indicial equation is r2= 0, and hence r1 = r2 = 0.
a1 = 0; the recurrence relation is
"a_n=\\frac{a_{n-2}}{(r+n)^2}" ,n=2,3...
We conclude a1= a3 = a5 = … = 0, and since r = 0,
"a_2m=\\frac{a_{2m-2}}{(2m)^2}" ,m=1,2...
"a_{2m}=\\frac{(-1)^ma_0}{2^{2m}(m!)}" ,m=1,2...
"y_1(x)=a_0(1+\\sum_{n=1}^{\\propto}\\frac{(-1)^ma_0}{2^{2m}(m!)})"
as y(1)=1, a0=1 so "y_1(x)=1+\\sum_{n=1}^{\\propto}\\frac{(-1)^m}{2^{2m}(m!)}"
"J_0(x)=\\sum_{n=1}^{\\propto}\\frac{(-1)^m}{2^{2m}(m!)}"
Since indicial equation has repeated roots, coeficients in second solution can be found using "a_n'(r)|_{r=0}"
"a_0(r)r^2x^r+a_1(r)(r+1)^2x^{r+1}+\\sum_{n=2}^{\\propto}(a_n(r)(r+n)^2a_{n-2}(r))x^{r+n}=0"
"a_1(r)=0, a_1'(0)=0"
"a_{n}(r)=\\frac{a_{n-2}(r)}{r+n}" , n=2,3..
"a'_{2m+1}(0)=0" , m=1,2...
"a_{2m}(r)=\\frac{a_{2m-2}(r)}{r+2m}= \\frac{(-1)^ma_0}{(r+2)^2...(r+2m)^2}"
"\\frac{a'_{2m}(r)}{a_{2m}(r)}=2(\\frac{1}{r+2}+\\frac{1}{r+4}...+\\frac{1}{r+2m})"
"a'_{2m}(0)=2(\\frac{1}{2}+\\frac{1}{4}...+\\frac{1}{2m})"
"H_m=\\frac{1}{2}+\\frac{1}{4}...+\\frac{1}{2m}"
"y_2(x)=J_0(x)lnx1+\\sum_{m=1}^{\\propto}\\frac{(-1)^{m+1}H_m}{2^{2m}(m!)}x^{2m},x>0"
Comments
Leave a comment