Question #178123

Find the general solutions of the following system

  1. dx/dt = -4x+2y , dy/dt = 5x/2 + 2y

2. X' = ( -1 3

- 3 5) X

3. X' = ( 4 -5

5 -4)X



1
Expert's answer
2021-04-29T16:43:18-0400

Consider a general system of linear ODE with two variables.

X˙(t)=AX(t)\dot{X}(t)=AX(t), XR2X\in R^2, AM(2,R)A\in M(2,R)

The solution can be expressed via exponent of the matrix (At)(At) :

X(t)=eAtX(0)X(t)=e^{At}X(0), where eAt=n=0+tnn!Ane^{At}=\sum\limits_{n=0}^{+\infty}\frac{t^n}{n!}A^n


2. Let A=(1335)A=\begin{pmatrix}-1 & 3 \\ -3 & 5\end{pmatrix} . The characteristic polinomial of A is λ24λ+4=(λ2)2\lambda^2-4\lambda+4=(\lambda-2)^2 .

By the Cayley–Hamilton theorem we have (A2I)2=0(A-2I)^2=0 . Then

eAt=e2tIe(A2I)t=e2tn=0+tnn!(A2I)n=e2t(I+t(A2I))e^{At}=e^{2tI}e^{(A-2I)t}=e^{2t}\sum\limits_{n=0}^{+\infty}\frac{t^n}{n!}(A-2I)^n=e^{2t}(I+t(A-2I))

eAt=e2t(13t3t3t1+3t)e^{At}=e^{2t}\begin{pmatrix}1-3t & 3t \\ -3t & 1+3t\end{pmatrix}

Answer. X(t)=eAtX(0)=e2t(13t3t3t1+3t)X(0)X(t)=e^{At}X(0)=e^{2t}\begin{pmatrix}1-3t & 3t \\ -3t & 1+3t\end{pmatrix}X(0) .


3. Let A=(4554)A=\begin{pmatrix}4 & -5 \\ 5 & -4\end{pmatrix}. The characteristic polinomial of A is λ2+9=0.\lambda^2+9=0.

By the Cayley–Hamilton theorem we have A2+9I=0A^2+9I=0, i.e. A2=9IA^2=-9I . Then

eAt=n=0+t2n(2n)!A2n+n=0+t2n+1(2n+1)!A2n+1=n=0+(9)nt2n(2n)!I+n=0+(9)nt2n+1(2n+1)!A=n=0+(1)n(3t)2n(2n)!I+13n=0+(1)n(3t)2n+1(2n+1)!A=cos(3t)I+13sin(3t)Ae^{At}=\sum\limits_{n=0}^{+\infty}\frac{t^{2n}}{(2n)!}A^{2n}+\sum\limits_{n=0}^{+\infty}\frac{t^{2n+1}}{(2n+1)!}A^{2n+1}=\sum\limits_{n=0}^{+\infty}\frac{(-9)^n t^{2n}}{(2n)!}I+\sum\limits_{n=0}^{+\infty}\frac{(-9)^nt^{2n+1}}{(2n+1)!}A=\sum\limits_{n=0}^{+\infty}(-1)^n \frac{(3t)^{2n}}{(2n)!}I+\frac{1}{3}\sum\limits_{n=0}^{+\infty}(-1)^n\frac{(3t)^{2n+1}}{(2n+1)!}A=\cos(3t)I+\frac{1}{3}\sin(3t)A

eAt=13(3cos3t+4sin3t5sin3t5sin3t3cos3t4sin3t)e^{At}=\frac{1}{3}\begin{pmatrix}3\cos 3t +4\sin 3t & -5\sin 3t \\ 5\sin 3t & 3\cos 3t -4\sin 3t\end{pmatrix}

Answer. X(t)=eAtX(0)=13(3cos3t+4sin3t5sin3t5sin3t3cos3t4sin3t)X(0)X(t)=e^{At}X(0)=\frac{1}{3}\begin{pmatrix}3\cos 3t +4\sin 3t & -5\sin 3t \\ 5\sin 3t & 3\cos 3t -4\sin 3t\end{pmatrix}X(0)


1. Assume that the matrix A has two different real roots λ1\lambda_1 and λ2\lambda_2 . The characteristic polinomial of A is λ2(λ1+λ2)λ+λ1λ2=0\lambda^2-(\lambda_1+\lambda_2)\lambda+\lambda_1\lambda_2=0. By the Cayley–Hamilton theorem we have A2(λ1+λ2)A+λ1λ2I=0A^2-(\lambda_1+\lambda_2)A+\lambda_1\lambda_2I=0. Let X1X_1 and X2X_2 be the eigenvectors of the matrix A, corresponding to the eigenvalues λ1\lambda_1 and λ2\lambda_2 respectively. They form a basis of the vector space R2R^2, hence X(0)=c1X1+c2X2X(0)=c_1X_1+c_2X_2 with some unknown coefficients c1c_1 and c2c_2. Then

eAtXi=n=0+tnn!AnXi=n=0+tnn!λinXi=eλitXie^{At}X_i=\sum\limits_{n=0}^{+\infty}\frac{t^n}{n!}A^nX_i=\sum\limits_{n=0}^{+\infty}\frac{t^n}{n!}\lambda_i^nX_i=e^{\lambda_it}X_i. So

X(t)=eAtX(0)=eAt(c1X1+c2X2)=c1eλ1tX1+c2eλ2tX2X(t)=e^{At}X(0)=e^{At}(c_1X_1+c_2X_2)=c_1e^{\lambda_1t}X_1+c_2e^{\lambda_2t}X_2

Notice that

(λ1IA)X(0)=(λ1IA)(c1X1+c2X2)=c2(λ1λ2)X2(\lambda_1 I-A)X(0)=(\lambda_1 I-A)(c_1 X_1+c_2 X_2)=c_2(\lambda_1-\lambda_2) X_2

(λ2IA)X(0)=(λ2IA)(c1X1+c2X2)=c1(λ2λ1)X1(\lambda_2 I-A)X(0)=(\lambda_2 I-A)(c_1 X_1+c_2 X_2)=c_1(\lambda_2-\lambda_1) X_1

therefore,

c2X2=1λ1λ2(λ1IA)X(0)c_2X_2=\frac{1}{\lambda_1-\lambda_2}(\lambda_1 I-A)X(0),

c1X1=1λ2λ1(λ2IA)X(0)c_1X_1=\frac{1}{\lambda_2-\lambda_1}(\lambda_2 I-A)X(0) and

X(t)=c1eλ1tX1+c2eλ2tX2=eλ1t1λ1λ2(λ1IA)X(0)+eλ2t1λ2λ1(λ2IA)X(0)X(t)=c_1e^{\lambda_1t}X_1+c_2e^{\lambda_2t}X_2=e^{\lambda_1t}\frac{1}{\lambda_1-\lambda_2}(\lambda_1 I-A)X(0)+e^{\lambda_2t}\frac{1}{\lambda_2-\lambda_1}(\lambda_2 I-A)X(0)

If we take A=(425/22)A=\begin{pmatrix}-4 & 2 \\ 5/2 & 2\end{pmatrix}, then the characteristic polynomial equals to λ2+2λ13\lambda^2+2\lambda-13, its roots are λ1=1+14\lambda_1=-1+\sqrt{14} and λ2=114\lambda_2=-1-\sqrt{14} .

X(t)=eλ1t1λ1λ2(λ1IA)X(0)+eλ2t1λ2λ1(λ2IA)X(0)X(t)=e^{\lambda_1t}\frac{1}{\lambda_1-\lambda_2}(\lambda_1 I-A)X(0)+e^{\lambda_2t}\frac{1}{\lambda_2-\lambda_1}(\lambda_2 I-A)X(0) implies

X(t)=e(1+14)t214((1+14)IA)X(0)e(114)t214((114)IA)X(0)X(t)=\frac{e^{(-1+\sqrt{14})t}}{2\sqrt{14}}((-1+\sqrt{14}) I-A)X(0)-\frac{e^{(-1-\sqrt{14})t}}{2\sqrt{14}}((-1-\sqrt{14}) I-A)X(0)

X(t)=et14((14cosh14t)I(I+A)sinh14t)X(0)X(t)=\frac{e^{-t}}{\sqrt{14}}((\sqrt{14}\cosh\sqrt{14}t) I-(I+A)\sinh \sqrt{14}t)X(0)

X(t)=et((cosh14t)Isinh14t14(I+A))X(0)X(t)=e^{-t}((\cosh\sqrt{14}t) I-\frac{\sinh \sqrt{14}t}{\sqrt{14}}(I+A))X(0)

Answer. X(t)=et((cosh14t)Isinh14t14(I+A))X(0)X(t)=e^{-t}((\cosh\sqrt{14}t) I-\frac{\sinh \sqrt{14}t}{\sqrt{14}}(I+A))X(0)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS