Find the general solutions of the following system
2. X' = ( -1 3
- 3 5) X
3. X' = ( 4 -5
5 -4)X
Consider a general system of linear ODE with two variables.
"\\dot{X}(t)=AX(t)", "X\\in R^2", "A\\in M(2,R)"
The solution can be expressed via exponent of the matrix "(At)" :
"X(t)=e^{At}X(0)", where "e^{At}=\\sum\\limits_{n=0}^{+\\infty}\\frac{t^n}{n!}A^n"
2. Let "A=\\begin{pmatrix}-1 & 3 \\\\ -3 & 5\\end{pmatrix}" . The characteristic polinomial of A is "\\lambda^2-4\\lambda+4=(\\lambda-2)^2" .
By the Cayley–Hamilton theorem we have "(A-2I)^2=0" . Then
"e^{At}=e^{2tI}e^{(A-2I)t}=e^{2t}\\sum\\limits_{n=0}^{+\\infty}\\frac{t^n}{n!}(A-2I)^n=e^{2t}(I+t(A-2I))"
"e^{At}=e^{2t}\\begin{pmatrix}1-3t & 3t \\\\ -3t & 1+3t\\end{pmatrix}"
Answer. "X(t)=e^{At}X(0)=e^{2t}\\begin{pmatrix}1-3t & 3t \\\\ -3t & 1+3t\\end{pmatrix}X(0)" .
3. Let "A=\\begin{pmatrix}4 & -5 \\\\ 5 & -4\\end{pmatrix}". The characteristic polinomial of A is "\\lambda^2+9=0."
By the Cayley–Hamilton theorem we have "A^2+9I=0", i.e. "A^2=-9I" . Then
"e^{At}=\\sum\\limits_{n=0}^{+\\infty}\\frac{t^{2n}}{(2n)!}A^{2n}+\\sum\\limits_{n=0}^{+\\infty}\\frac{t^{2n+1}}{(2n+1)!}A^{2n+1}=\\sum\\limits_{n=0}^{+\\infty}\\frac{(-9)^n t^{2n}}{(2n)!}I+\\sum\\limits_{n=0}^{+\\infty}\\frac{(-9)^nt^{2n+1}}{(2n+1)!}A=\\sum\\limits_{n=0}^{+\\infty}(-1)^n \\frac{(3t)^{2n}}{(2n)!}I+\\frac{1}{3}\\sum\\limits_{n=0}^{+\\infty}(-1)^n\\frac{(3t)^{2n+1}}{(2n+1)!}A=\\cos(3t)I+\\frac{1}{3}\\sin(3t)A"
"e^{At}=\\frac{1}{3}\\begin{pmatrix}3\\cos 3t +4\\sin 3t & -5\\sin 3t \\\\ 5\\sin 3t & 3\\cos 3t -4\\sin 3t\\end{pmatrix}"
Answer. "X(t)=e^{At}X(0)=\\frac{1}{3}\\begin{pmatrix}3\\cos 3t +4\\sin 3t & -5\\sin 3t \\\\ 5\\sin 3t & 3\\cos 3t -4\\sin 3t\\end{pmatrix}X(0)"
1. Assume that the matrix A has two different real roots "\\lambda_1" and "\\lambda_2" . The characteristic polinomial of A is "\\lambda^2-(\\lambda_1+\\lambda_2)\\lambda+\\lambda_1\\lambda_2=0". By the Cayley–Hamilton theorem we have "A^2-(\\lambda_1+\\lambda_2)A+\\lambda_1\\lambda_2I=0". Let "X_1" and "X_2" be the eigenvectors of the matrix A, corresponding to the eigenvalues "\\lambda_1" and "\\lambda_2" respectively. They form a basis of the vector space "R^2", hence "X(0)=c_1X_1+c_2X_2" with some unknown coefficients "c_1" and "c_2". Then
"e^{At}X_i=\\sum\\limits_{n=0}^{+\\infty}\\frac{t^n}{n!}A^nX_i=\\sum\\limits_{n=0}^{+\\infty}\\frac{t^n}{n!}\\lambda_i^nX_i=e^{\\lambda_it}X_i". So
"X(t)=e^{At}X(0)=e^{At}(c_1X_1+c_2X_2)=c_1e^{\\lambda_1t}X_1+c_2e^{\\lambda_2t}X_2"
Notice that
"(\\lambda_1 I-A)X(0)=(\\lambda_1 I-A)(c_1 X_1+c_2 X_2)=c_2(\\lambda_1-\\lambda_2) X_2"
"(\\lambda_2 I-A)X(0)=(\\lambda_2 I-A)(c_1 X_1+c_2 X_2)=c_1(\\lambda_2-\\lambda_1) X_1"
therefore,
"c_2X_2=\\frac{1}{\\lambda_1-\\lambda_2}(\\lambda_1 I-A)X(0)",
"c_1X_1=\\frac{1}{\\lambda_2-\\lambda_1}(\\lambda_2 I-A)X(0)" and
"X(t)=c_1e^{\\lambda_1t}X_1+c_2e^{\\lambda_2t}X_2=e^{\\lambda_1t}\\frac{1}{\\lambda_1-\\lambda_2}(\\lambda_1 I-A)X(0)+e^{\\lambda_2t}\\frac{1}{\\lambda_2-\\lambda_1}(\\lambda_2 I-A)X(0)"
If we take "A=\\begin{pmatrix}-4 & 2 \\\\ 5\/2 & 2\\end{pmatrix}", then the characteristic polynomial equals to "\\lambda^2+2\\lambda-13", its roots are "\\lambda_1=-1+\\sqrt{14}" and "\\lambda_2=-1-\\sqrt{14}" .
"X(t)=e^{\\lambda_1t}\\frac{1}{\\lambda_1-\\lambda_2}(\\lambda_1 I-A)X(0)+e^{\\lambda_2t}\\frac{1}{\\lambda_2-\\lambda_1}(\\lambda_2 I-A)X(0)" implies
"X(t)=\\frac{e^{(-1+\\sqrt{14})t}}{2\\sqrt{14}}((-1+\\sqrt{14}) I-A)X(0)-\\frac{e^{(-1-\\sqrt{14})t}}{2\\sqrt{14}}((-1-\\sqrt{14}) I-A)X(0)"
"X(t)=\\frac{e^{-t}}{\\sqrt{14}}((\\sqrt{14}\\cosh\\sqrt{14}t) I-(I+A)\\sinh \\sqrt{14}t)X(0)"
"X(t)=e^{-t}((\\cosh\\sqrt{14}t) I-\\frac{\\sinh \\sqrt{14}t}{\\sqrt{14}}(I+A))X(0)"
Answer. "X(t)=e^{-t}((\\cosh\\sqrt{14}t) I-\\frac{\\sinh \\sqrt{14}t}{\\sqrt{14}}(I+A))X(0)"
Comments
Leave a comment