Question #178125

1/xy2 +y4 is an integrating factor for the differential equation (x2y + y2)dx + (y3 - x3)dy = 0

x1/


1
Expert's answer
2021-04-25T07:37:55-0400

Solution.

(x2y+y2)dx+(y3x3)dy=0(x^ 2 y + y^ 2 ) dx + (y^ 3 - x^ 3 ) dy = 0

If y2x+y4\frac{y^2}{x}+y^4 is an integrating factor for the differential equation, then


(y2x+y4)(x2y+y2)dx+(y2x+y4)(y3x3)dy=0.(\frac{y^2}{x}+y^4 )(x^ 2 y + y^ 2 ) dx +(\frac{y^2}{x}+y^4 ) (y^ 3 - x^ 3 ) dy = 0.

So,

F(x,y)=(y2x+y4)(x2y+y2)dx=(xy3+x2y5+y4x+y6)dx==y3x22+y5x33+y4lnx+y6x+g(y).F(x,y)=\int (\frac{y^2}{x}+y^4 )(x^ 2 y + y^ 2 ) dx=\int(xy^3+x^2y^5+\frac{y^4}{x}+y^6)dx=\newline =y^3\frac{x^2}{2}+y^5\frac{x^3}{3}+y^4\ln{x}+y^6x+g(y).

Fy(x,y)=32x2y2+53x3y4+4lnxy3+6xy5+g(y),F_y'(x,y)=\frac{3}{2}x^2y^2+\frac{5}{3}x^3y^4+4\ln{x}y^3+6xy^5+g'(y),

32x2y2+53x3y4+4lnxy3+6xy5+g(y)=y5x+y7x2y2x3y4.\frac{3}{2}x^2y^2+\frac{5}{3}x^3y^4+4\ln{x}y^3+6xy^5+g'(y)=\frac{y^5}{x}+y^7-x^2y^2-x^3y^4.

From here

g(y)=y5x+y752x2y283x3y44lnxy36xy5.g'(y)=\frac{y^5}{x}+y^7-\frac{5}{2}x^2y^2-\frac{8}{3}x^3y^4-4\ln{x}y^3-6xy^5.

g(y)=y66x+y885x2y368x3y515lnxy4xy6+C,g(y)=\frac{y^6}{6x}+\frac{y^8}{8}-\frac{5x^2y^3}{6}-\frac{8x^3y^5}{15}-\ln{x}y^4-xy^6+C,

where CC is some constant.

Answer.

y3x22+y5x33+y4lnx+y6x+y66x+y885x2y368x3y515lnxy4xy6+C==13x2y315x3y5+16y6x+18y8+C.y^3\frac{x^2}{2}+y^5\frac{x^3}{3}+y^4\ln{x}+y^6x+\frac{y^6}{6x}+\frac{y^8}{8}-\frac{5x^2y^3}{6}-\frac{8x^3y^5}{15}-\ln{x}y^4-xy^6+C=\newline =-\frac{1}{3}x^2y^3-\frac{1}{5}x^3y^5+\frac{1}{6}\frac{y^6}{x}+\frac{1}{8}y^8+C.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS