Solution.
(x2y+y2)dx+(y3−x3)dy=0 If xy2+y4 is an integrating factor for the differential equation, then
(xy2+y4)(x2y+y2)dx+(xy2+y4)(y3−x3)dy=0. So,
F(x,y)=∫(xy2+y4)(x2y+y2)dx=∫(xy3+x2y5+xy4+y6)dx==y32x2+y53x3+y4lnx+y6x+g(y).
Fy′(x,y)=23x2y2+35x3y4+4lnxy3+6xy5+g′(y),
23x2y2+35x3y4+4lnxy3+6xy5+g′(y)=xy5+y7−x2y2−x3y4.
From here
g′(y)=xy5+y7−25x2y2−38x3y4−4lnxy3−6xy5.
g(y)=6xy6+8y8−65x2y3−158x3y5−lnxy4−xy6+C,
where C is some constant.
Answer.
y32x2+y53x3+y4lnx+y6x+6xy6+8y8−65x2y3−158x3y5−lnxy4−xy6+C==−31x2y3−51x3y5+61xy6+81y8+C.
Comments