Question #178060

Using the method of undetermined coefficients, find the general solution of the differential equation y^(iv) -2y^''' +y^''=3 e^-x+2 e^x x + e^-x sin (x ) 


1
Expert's answer
2021-04-15T06:57:13-0400

y(4)2y+y=3ex+2xex+exsinxy^{(4)}-2y^{'''}+y''=3e^{-x}+2xe^x+e^{-x}sinx


m42m3+m2=0m^4-2m^3+m^2=0

m2(m22m+1)=0m^2(m^2-2m+1)=0

m2(m1)2=0m^2(m-1)^2=0

m1=m2=0, m3=m4=1m_1=m_2=0,\ m_3=m_4=1

The complementary solution:

yc=c1+c2x+c3ex+c4xexy_c=c_1+c_2x+c_3e^x+c_4xe^x


Solve for particular solutions, using the method of undetermined coefficients:

yp1=Aexy_{p1}=Ae^{-x}

Aex+2Aex+Aex=3exAe^{-x}+2Ae^{-x}+Ae^{-x}=3e^{-x}

4A=3    A=3/44A=3\implies A=3/4

yp1=3ex4y_{p1}=\frac{3e^{-x}}{4}


yp2=(Ax3+Bx2)exy_{p2}=(Ax^3+Bx^2)e^x

yp2=(3Ax2+2Bx)ex+(Ax3+Bx2)ex=(Ax3+(3A+B)x2+2Bx)exy'_{p2}=(3Ax^2+2Bx)e^x+(Ax^3+Bx^2)e^x=(Ax^3+(3A+B)x^2+2Bx)e^x


yp2=(3Ax2+2(3A+B)x+2B)ex+(Ax3+(3A+B)x2+2Bx)ex=y''_{p2}=(3Ax^2+2(3A+B)x+2B)e^x+(Ax^3+(3A+B)x^2+2Bx)e^x=

=(Ax3+(6A+B)x2+2(3A+2B)x+2B)ex=(Ax^3+(6A+B)x^2+2(3A+2B)x+2B)e^x


yp2=(3Ax2+2(6A+B)x+2(3A+2B))ex+(Ax3+(6A+B)x2+y'''_{p2}=(3Ax^2+2(6A+B)x+2(3A+2B))e^x+(Ax^3+(6A+B)x^2+

+2(3A+2B)x+2B)ex=(Ax3+(9A+B)x2+(18A+6B)x+6A+6B)ex+2(3A+2B)x+2B)e^x=(Ax^3+(9A+B)x^2+(18A+6B)x+6A+6B)e^x

yp2(4)=(3Ax2+2(9A+B)x+18A+6B)ex+(Ax3+(9A+B)x2+y^{(4)}_{p2}=(3Ax^2+2(9A+B)x+18A+6B)e^x+(Ax^3+(9A+B)x^2+

+(18A+6B)x+6A+6B)ex=(Ax3+(12A+B)x2+(36A+8B)x++(18A+6B)x+6A+6B)e^x=(Ax^3+(12A+B)x^2+(36A+8B)x+

+24A+12B)ex+24A+12B)e^x

36A+8B2(18A+6B)+6A+4B=236A+8B-2(18A+6B)+6A+4B=2

6A=2    A=1/36A=2\implies A=1/3

24A+12B2(6A+6B)+2B=024A+12B-2(6A+6B)+2B=0

12A+2B=0    B=212A+2B=0\implies B=-2

yp2=(x332x2)exy_{p2}=(\frac{x^3}{3}-2x^2)e^x


yp3=ex(Acosx+Bsinx)y_{p3}=e^{-x}(Acosx+Bsinx)

yp3=(BcosxAsinx)ex(Acosx+Bsinx)ex=((BA)cosxy'_{p3}=(Bcosx-Asinx)e^{-x}-(Acosx+Bsinx)e^{-x}=((B-A)cosx-

(A+B)sinx)ex-(A+B)sinx)e^{-x}

yp3=((AB)sinx(A+B)cosx)ex((BA)cosx(A+B)sinx)ex=y''_{p3}=((A-B)sinx-(A+B)cosx)e^{-x}-((B-A)cosx-(A+B)sinx)e^{-x}=

=(2Asinx2Bcosx)ex=(2Asinx-2Bcosx)e^{-x}

yp3=(2Acosx+2Bsinx)ex(2Asinx2Bcosx)ex=y'''_{p3}=(2Acosx+2Bsinx)e^{-x}-(2Asinx-2Bcosx)e^{-x}=

=((2A+2B)cosx+(2B2A)sinx)ex=((2A+2B)cosx+(2B-2A)sinx)e^{-x}

yp3(4)=((2B2A)cosx(2A+2B)sinx)ex((2A+2B)cosx+y^{(4)}_{p3}=((2B-2A)cosx-(2A+2B)sinx)e^{-x}-((2A+2B)cosx+

+(2B2A)sinx)ex=(4Acosx4Bsinx)ex+(2B-2A)sinx)e^{-x}=(-4Acosx-4Bsinx)e^{-x}

4A2(2A+2B)2B=0-4A-2(2A+2B)-2B=0

8A6B=0-8A-6B=0

4B2(2B2A)+2A=1-4B-2(2B-2A)+2A=1

8B+6A=1-8B+6A=1

A=3B/4A=-3B/4

8B18B/4=1    50B=4    B=2/25-8B-18B/4=1\implies -50B=4\implies B=-2/25

A=3/50A=3/50

yp3(4)=ex(3cosx502sinx25)y^{(4)}_{p3}=e^{-x}(\frac{3cosx}{50}-\frac{2sinx}{25})


The general solution:

y=yc+ypy=y_c+y_p


y(x)=c1+c2x+c3ex+c4xex+3ex4+(x332x2)ex+ex(3cosx502sinx25)y(x)=c_1+c_2x+c_3e^x+c_4xe^x+\frac{3e^{-x}}{4}+(\frac{x^3}{3}-2x^2)e^x+e^{-x}(\frac{3cosx}{50}-\frac{2sinx}{25})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS