Using the method of undetermined coefficients, find the general solution of the differential equation y^(iv) -2y^''' +y^''=3 e^-x+2 e^x x + e^-x sin (x )
"y^{(4)}-2y^{'''}+y''=3e^{-x}+2xe^x+e^{-x}sinx"
"m^4-2m^3+m^2=0"
"m^2(m^2-2m+1)=0"
"m^2(m-1)^2=0"
"m_1=m_2=0,\\ m_3=m_4=1"
The complementary solution:
"y_c=c_1+c_2x+c_3e^x+c_4xe^x"
Solve for particular solutions, using the method of undetermined coefficients:
"y_{p1}=Ae^{-x}"
"Ae^{-x}+2Ae^{-x}+Ae^{-x}=3e^{-x}"
"4A=3\\implies A=3\/4"
"y_{p1}=\\frac{3e^{-x}}{4}"
"y_{p2}=(Ax^3+Bx^2)e^x"
"y'_{p2}=(3Ax^2+2Bx)e^x+(Ax^3+Bx^2)e^x=(Ax^3+(3A+B)x^2+2Bx)e^x"
"y''_{p2}=(3Ax^2+2(3A+B)x+2B)e^x+(Ax^3+(3A+B)x^2+2Bx)e^x="
"=(Ax^3+(6A+B)x^2+2(3A+2B)x+2B)e^x"
"y'''_{p2}=(3Ax^2+2(6A+B)x+2(3A+2B))e^x+(Ax^3+(6A+B)x^2+"
"+2(3A+2B)x+2B)e^x=(Ax^3+(9A+B)x^2+(18A+6B)x+6A+6B)e^x"
"y^{(4)}_{p2}=(3Ax^2+2(9A+B)x+18A+6B)e^x+(Ax^3+(9A+B)x^2+"
"+(18A+6B)x+6A+6B)e^x=(Ax^3+(12A+B)x^2+(36A+8B)x+"
"+24A+12B)e^x"
"36A+8B-2(18A+6B)+6A+4B=2"
"6A=2\\implies A=1\/3"
"24A+12B-2(6A+6B)+2B=0"
"12A+2B=0\\implies B=-2"
"y_{p2}=(\\frac{x^3}{3}-2x^2)e^x"
"y_{p3}=e^{-x}(Acosx+Bsinx)"
"y'_{p3}=(Bcosx-Asinx)e^{-x}-(Acosx+Bsinx)e^{-x}=((B-A)cosx-"
"-(A+B)sinx)e^{-x}"
"y''_{p3}=((A-B)sinx-(A+B)cosx)e^{-x}-((B-A)cosx-(A+B)sinx)e^{-x}="
"=(2Asinx-2Bcosx)e^{-x}"
"y'''_{p3}=(2Acosx+2Bsinx)e^{-x}-(2Asinx-2Bcosx)e^{-x}="
"=((2A+2B)cosx+(2B-2A)sinx)e^{-x}"
"y^{(4)}_{p3}=((2B-2A)cosx-(2A+2B)sinx)e^{-x}-((2A+2B)cosx+"
"+(2B-2A)sinx)e^{-x}=(-4Acosx-4Bsinx)e^{-x}"
"-4A-2(2A+2B)-2B=0"
"-8A-6B=0"
"-4B-2(2B-2A)+2A=1"
"-8B+6A=1"
"A=-3B\/4"
"-8B-18B\/4=1\\implies -50B=4\\implies B=-2\/25"
"A=3\/50"
"y^{(4)}_{p3}=e^{-x}(\\frac{3cosx}{50}-\\frac{2sinx}{25})"
The general solution:
"y=y_c+y_p"
"y(x)=c_1+c_2x+c_3e^x+c_4xe^x+\\frac{3e^{-x}}{4}+(\\frac{x^3}{3}-2x^2)e^x+e^{-x}(\\frac{3cosx}{50}-\\frac{2sinx}{25})"
Comments
Leave a comment