y(4)−2y′′′+y′′=3e−x+2xex+e−xsinx
m4−2m3+m2=0
m2(m2−2m+1)=0
m2(m−1)2=0
m1=m2=0, m3=m4=1
The complementary solution:
yc=c1+c2x+c3ex+c4xex
Solve for particular solutions, using the method of undetermined coefficients:
yp1=Ae−x
Ae−x+2Ae−x+Ae−x=3e−x
4A=3⟹A=3/4
yp1=43e−x
yp2=(Ax3+Bx2)ex
yp2′=(3Ax2+2Bx)ex+(Ax3+Bx2)ex=(Ax3+(3A+B)x2+2Bx)ex
yp2′′=(3Ax2+2(3A+B)x+2B)ex+(Ax3+(3A+B)x2+2Bx)ex=
=(Ax3+(6A+B)x2+2(3A+2B)x+2B)ex
yp2′′′=(3Ax2+2(6A+B)x+2(3A+2B))ex+(Ax3+(6A+B)x2+
+2(3A+2B)x+2B)ex=(Ax3+(9A+B)x2+(18A+6B)x+6A+6B)ex
yp2(4)=(3Ax2+2(9A+B)x+18A+6B)ex+(Ax3+(9A+B)x2+
+(18A+6B)x+6A+6B)ex=(Ax3+(12A+B)x2+(36A+8B)x+
+24A+12B)ex
36A+8B−2(18A+6B)+6A+4B=2
6A=2⟹A=1/3
24A+12B−2(6A+6B)+2B=0
12A+2B=0⟹B=−2
yp2=(3x3−2x2)ex
yp3=e−x(Acosx+Bsinx)
yp3′=(Bcosx−Asinx)e−x−(Acosx+Bsinx)e−x=((B−A)cosx−
−(A+B)sinx)e−x
yp3′′=((A−B)sinx−(A+B)cosx)e−x−((B−A)cosx−(A+B)sinx)e−x=
=(2Asinx−2Bcosx)e−x
yp3′′′=(2Acosx+2Bsinx)e−x−(2Asinx−2Bcosx)e−x=
=((2A+2B)cosx+(2B−2A)sinx)e−x
yp3(4)=((2B−2A)cosx−(2A+2B)sinx)e−x−((2A+2B)cosx+
+(2B−2A)sinx)e−x=(−4Acosx−4Bsinx)e−x
−4A−2(2A+2B)−2B=0
−8A−6B=0
−4B−2(2B−2A)+2A=1
−8B+6A=1
A=−3B/4
−8B−18B/4=1⟹−50B=4⟹B=−2/25
A=3/50
yp3(4)=e−x(503cosx−252sinx)
The general solution:
y=yc+yp
y(x)=c1+c2x+c3ex+c4xex+43e−x+(3x3−2x2)ex+e−x(503cosx−252sinx)
Comments