Solve the following non-homogeneous linear ODE of first order
dy/dx + 3y/3x = 6x^2
Given,
dydx+3y3x=6x2\dfrac{dy}{dx}+\dfrac{3y}{3x}=6x^2dxdy+3x3y=6x2
This is linear differential equation so
Here P=1x,Q=6x2P=\dfrac{1}{x}, Q=6x^2P=x1,Q=6x2
Integrating factor I.F.=e∫Pdx=e1xdx=elogx=xI.F.=e^{\int Pdx}=e^{\dfrac{1}{x}dx}=e^{logx}=xI.F.=e∫Pdx=ex1dx=elogx=x
Therefore the solution is-
y×I.F.=∫Q×I.F.dxy\times I.F.=\int Q\times I.F. dxy×I.F.=∫Q×I.F.dx
y×x=∫6x3dxy\times x=\int 6x^3dxy×x=∫6x3dx
y×x=6x44+Cy\times x=\dfrac{6x^4}{4}+Cy×x=46x4+C
yx=32x4+Cyx=\dfrac{3}{2}x^4+Cyx=23x4+C
Hence, y=32x3+Cxy=\dfrac{3}{2}x^3+\dfrac{C}{x}y=23x3+xC
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments