Question #178600

Solve the following equations using appropriate substitutions

a) y' = 5y +( e^−3x)(y^−3)


b) xdy = y(ln x − ln y)dx, y(1) = 4, x > 0.



1
Expert's answer
2021-05-07T09:56:00-0400

Solution.

part a)

y5ye3xy3=0y'-5y-e^{-3x}y^{-3}=0

Rewrite the

original differential equation as follows:

5y4e3x+y3ye3x=1-5y^4e^{3x}+y^3y'e^{3x}=1

This is the Bernoulli equation for n = 4.

Substitution z=y4.z =y^4.

Then: z=4y3y,z'=4y^3y',

and therefore the equation is rewritten as

5ze3x+14ze3x=1.-5ze^{3x}+\frac{1}{4}z'e^{3x}=1.

We solve this equation by the method of variation of an arbitrary constant.

This is a non-homogeneous equation. Consider the corresponding homogeneous equation:

5ze3x+14ze3x=0.-5ze^{3x}+\frac{1}{4}z'e^{3x}=0.

Solving it, we get:

z=20z.z'=20z.

Integrating, we get:

lnz=20x,z=e20x.\ln{z}=20x,\newline z=e^{20x}.

We are now looking for a solution of the original equation in the form:

z(x)=C(x)e20x,z(x)=C(x)e20x+C(x)(e20x).z(x)=C(x)e^{20x},\newline z '(x) = C (x) e ^{20 x} + C (x) (e ^{20 x} ) '.

So,

C(x)=4e23xC'(x)= 4 e ^{-23 x}

Integrating, we obtain:

C(x)=423e23x.C(x)=-\frac{4}{23}e^{-23x}.

From the condition

z(x)=423e23xe20x.z(x)=-\frac{4}{23}e^{-23x}e^{20x}.

Since z=y4,z=y^4,  we get:

y4=Ce20x423e3x.y^4=Ce^{20x}-\frac{4}{23}e^{-3x}.

part b)


xy=y(lnxlny).xy′=y(\ln x−\ln y).

We make substitution



u(x)=y(x)x.u(x)=\frac{y(x)}{x}.

Then y(x)=u(x)xy(x)=u(x)x and

y=ux+u.y'=u'x+u.

We will have

x2u+xu=ux(lnxln(ux)),x^2u'+xu=ux(\ln x-\ln (ux)),

or x2u+xulnu+xu=0.x^2u'+xu\ln u+xu=0.

Solve this equation:

u(lnu+1)u=1x,\frac{u'}{(\ln u+1)u}=-\frac{1}{x}, or

du(lnu+1)u=dxx.\frac{du}{(\ln u+1)u}=-\frac{dx}{x}.

du(lnu+1)u=dxx,\int\frac{du}{(\ln u+1)u}=-\int\frac{dx}{x},

ln(lnu+1)=lnx+C,\ln ({\ln u +1})=-\ln x +C,

where C is some constant.

From here u=eC1x1.u = e^{\frac{C_1}{x}-1}.

And the solution of given equation is


y=xeC1x1.y = xe^{\frac{C_1}{x}-1}.

y(1)=4, then

eC11=4,C11=ln4,C1=ln4+1,y=xeln4+1x1.e^{C_1-1}=4,\newline C_1-1=\ln 4,\newline C_1=\ln 4+1,\newline y=xe^{\frac{\ln 4 +1}{x}-1}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS