Question #178630

(3x + y − 2)dx − (3x + y + 4)dy = 0


1
Expert's answer
2021-04-13T23:58:36-0400

(3x+y2)dx(3x+y+4)dy=0dydx=3x+y23x+y+4Substituteu=3x+y2dudx=3+dydxdudx3=uu+6dudx=uu+6+3=4u+18u+6u+64u+18du=dx144u+18+64u+18du=dx14+3214u+18du=dxu4+3ln(4u+18)8=x+C3x+y24+3ln(4(3x+y2)+18)8=x+C3x+y24+3ln(2(6x+2y+5))8=x+C\displaystyle (3x + y − 2)\mathrm{d}x − (3x + y + 4)\mathrm{d}y = 0\\ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x + y - 2}{3x + y + 4}\\ \textsf{Substitute}\,\, u = 3x + y - 2\\ \frac{\mathrm{d}u}{\mathrm{d}x} = 3 + \frac{\mathrm{d}y}{\mathrm{d}x}\\ \frac{\mathrm{d}u}{\mathrm{d}x} - 3 = \frac{u}{u + 6}\\ \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{u}{u + 6} + 3 = \frac{4u + 18}{u + 6}\\ \frac{u + 6}{4u + 18} \mathrm{d}u = \mathrm{d}x \\ \int \frac{1}{4}\cdot \frac{4u + 18 + 6}{4u + 18} \,\, \mathrm{d}u = \int \mathrm{d}x \\ \int \frac{1}{4} + \frac{3}{2} \cdot\frac{1}{4u + 18} \,\, \mathrm{d}u = \int \mathrm{d}x \\ \frac{u}{4} + \frac{3\ln{(4u + 18)}}{8} = x + C\\ \frac{3x + y - 2}{4} + \frac{3\ln{(4(3x + y - 2) + 18)}}{8} = x + C\\ \frac{3x + y - 2}{4} + \frac{3\ln{(2(6x + 2y + 5))}}{8} = x + C\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS