(3x+y−2)dx−(3x+y+4)dy=0dxdy=3x+y+43x+y−2Substituteu=3x+y−2dxdu=3+dxdydxdu−3=u+6udxdu=u+6u+3=u+64u+184u+18u+6du=dx∫41⋅4u+184u+18+6du=∫dx∫41+23⋅4u+181du=∫dx4u+83ln(4u+18)=x+C43x+y−2+83ln(4(3x+y−2)+18)=x+C43x+y−2+83ln(2(6x+2y+5))=x+C
Comments