(3x + y − 2)dx − (3x + y + 4)dy = 0
"\\displaystyle\n(3x + y \u2212 2)\\mathrm{d}x \u2212 (3x + y + 4)\\mathrm{d}y = 0\\\\\n\n\\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\frac{3x + y - 2}{3x + y + 4}\\\\\n\n\\textsf{Substitute}\\,\\, u = 3x + y - 2\\\\\n\n\\frac{\\mathrm{d}u}{\\mathrm{d}x} = 3 + \\frac{\\mathrm{d}y}{\\mathrm{d}x}\\\\\n\n\n\\frac{\\mathrm{d}u}{\\mathrm{d}x} - 3 = \\frac{u}{u + 6}\\\\\n\n\n\\frac{\\mathrm{d}u}{\\mathrm{d}x} = \\frac{u}{u + 6} + 3 = \\frac{4u + 18}{u + 6}\\\\\n\n\\frac{u + 6}{4u + 18} \\mathrm{d}u = \\mathrm{d}x \\\\\n\n\n\\int \\frac{1}{4}\\cdot \\frac{4u + 18 + 6}{4u + 18} \\,\\, \\mathrm{d}u = \\int \\mathrm{d}x \\\\\n\n\n\n\\int \\frac{1}{4} + \\frac{3}{2} \\cdot\\frac{1}{4u + 18} \\,\\, \\mathrm{d}u = \\int \\mathrm{d}x \\\\\n\n\n\\frac{u}{4} + \\frac{3\\ln{(4u + 18)}}{8} = x + C\\\\\n\n\n\\frac{3x + y - 2}{4} + \\frac{3\\ln{(4(3x + y - 2) + 18)}}{8} = x + C\\\\\n\n\\frac{3x + y - 2}{4} + \\frac{3\\ln{(2(6x + 2y + 5))}}{8} = x + C\\\\"
Comments
Leave a comment