y(x + y)dx + (x + 2y − 1)dy = 0
Solution.
"y(x+y)dx+(x+2y\u22121)dy=0,\\newline\n(yx+y^2)dx+(x+2y\u22121)dy=0.\\newline\n \\text{Let be } M(x,y)=yx+y^2, N(x,y)=x+2y-1."
Find integrating multiplier "\\mu(x,y):"
"\\frac{M_y-N_x}{N}=\\frac{x\n+2y-1}{x+2y-1}=1."
"\\mu(x,y)=e^{\\int 1dx}=e^x."
We will have
"(yx+y^2)e^xdx+(x+2y\u22121)e^xdy=0.\\newline"
This equation is exact. Then "F(x,y)=\\int (xy+y^2)e^xdx=y^2e^x+(xe^x-e^x)y+g(y),"
from here "F_y=2ye^x+xe^x-e^x+g'(x)=N(x,y)=(x+2y-1)e^x,"
then "g'(x)=0, g(x)=C," where "C" is some constant.
So, "e^xy^2+(xe^x-e^x)y+C=0" is the solution of equation.
Answer. "e^xy^2+(xe^x-e^x)y+C=0."
Comments
Leave a comment