Question #178631

y(x + y)dx + (x + 2y − 1)dy = 0


1
Expert's answer
2021-04-25T07:24:11-0400

Solution.

y(x+y)dx+(x+2y1)dy=0,(yx+y2)dx+(x+2y1)dy=0.Let be M(x,y)=yx+y2,N(x,y)=x+2y1.y(x+y)dx+(x+2y−1)dy=0,\newline (yx+y^2)dx+(x+2y−1)dy=0.\newline \text{Let be } M(x,y)=yx+y^2, N(x,y)=x+2y-1.

Find integrating multiplier μ(x,y):\mu(x,y):

MyNxN=x+2y1x+2y1=1.\frac{M_y-N_x}{N}=\frac{x +2y-1}{x+2y-1}=1.

μ(x,y)=e1dx=ex.\mu(x,y)=e^{\int 1dx}=e^x.

We will have

(yx+y2)exdx+(x+2y1)exdy=0.(yx+y^2)e^xdx+(x+2y−1)e^xdy=0.\newline

This equation is exact. Then F(x,y)=(xy+y2)exdx=y2ex+(xexex)y+g(y),F(x,y)=\int (xy+y^2)e^xdx=y^2e^x+(xe^x-e^x)y+g(y),

from here Fy=2yex+xexex+g(x)=N(x,y)=(x+2y1)ex,F_y=2ye^x+xe^x-e^x+g'(x)=N(x,y)=(x+2y-1)e^x,

then g(x)=0,g(x)=C,g'(x)=0, g(x)=C, where CC is some constant.

So, exy2+(xexex)y+C=0e^xy^2+(xe^x-e^x)y+C=0 is the solution of equation.

Answer. exy2+(xexex)y+C=0.e^xy^2+(xe^x-e^x)y+C=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS