z=e^(x-2y) x=cost y=sint dz/dt=?
Given: "z=e^{x-2y},x=cost,y=sint"
Require to find "\\frac{dz}{dt}"
Recollect the following Chain Rule:
If "z=f(x,y),x=g(t),y=h(t)" , then "\\frac{dz}{dt}=\\frac{\\partial z}{\\partial x}\\frac{dx}{dt}+\\frac{\\partial z}{\\partial y}\\frac{dy}{dt}"
Now "z=e^{x-2y}\\Rightarrow \\frac{\\partial z}{\\partial x}=e^{x-2y}(1-2(0))=e^{x-2y}" , "\\frac{\\partial z}{\\partial y}=e^{x-2y}(0-2(1))=-2e^{x-2y}"
And "x=cost,y=sint\\Rightarrow \\frac{dx}{dt}=-sint, \\frac{dy}{dt}=cost"
Using the Chain Rule, we get
"\\frac{dz}{dt}=\\frac{\\partial z}{\\partial x}\\frac{dx}{dt}+\\frac{\\partial z}{\\partial y}\\frac{dy}{dt}"
"\\Rightarrow \\frac{dz}{dt}=(e^{x-2y})(-sint)+(-2e^{x-2y})(cost)"
"\\Rightarrow \\frac{dz}{dt}=-sinte^{x-2y}-2coste^{x-2y}"
"\\Rightarrow \\frac{dz}{dt}=-e^{x-2y}[sint+2cost]"
Therefore "\\Rightarrow \\frac{dz}{dt}=-(sint+2cost)e^{x-2y}"
Comments
Leave a comment