Question #178969

z=e^(x-2y) x=cost y=sint dz/dt=?


1
Expert's answer
2021-04-13T16:28:14-0400

Given: z=ex−2y,x=cost,y=sintz=e^{x-2y},x=cost,y=sint

Require to find dzdt\frac{dz}{dt}


Recollect the following Chain Rule:


If z=f(x,y),x=g(t),y=h(t)z=f(x,y),x=g(t),y=h(t) , then dzdt=∂z∂xdxdt+∂z∂ydydt\frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}


Now z=ex−2y⇒∂z∂x=ex−2y(1−2(0))=ex−2yz=e^{x-2y}\Rightarrow \frac{\partial z}{\partial x}=e^{x-2y}(1-2(0))=e^{x-2y} , ∂z∂y=ex−2y(0−2(1))=−2ex−2y\frac{\partial z}{\partial y}=e^{x-2y}(0-2(1))=-2e^{x-2y}


And x=cost,y=sint⇒dxdt=−sint,dydt=costx=cost,y=sint\Rightarrow \frac{dx}{dt}=-sint, \frac{dy}{dt}=cost


Using the Chain Rule, we get

dzdt=∂z∂xdxdt+∂z∂ydydt\frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}

⇒dzdt=(ex−2y)(−sint)+(−2ex−2y)(cost)\Rightarrow \frac{dz}{dt}=(e^{x-2y})(-sint)+(-2e^{x-2y})(cost)

⇒dzdt=−sintex−2y−2costex−2y\Rightarrow \frac{dz}{dt}=-sinte^{x-2y}-2coste^{x-2y}

⇒dzdt=−ex−2y[sint+2cost]\Rightarrow \frac{dz}{dt}=-e^{x-2y}[sint+2cost]


Therefore ⇒dzdt=−(sint+2cost)ex−2y\Rightarrow \frac{dz}{dt}=-(sint+2cost)e^{x-2y}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS