2x(y+z2)∂z/∂x+y(2y+z2)∂z/∂y=z2dx/(2x(y+z2))=dy/(y(2y+z2))=dz/z2ydx/(2xy2+2xyz2)=xdy/(2xy2+xyz2))=xydz/(xyz2)(ydx−xdy−xydz)/(2xy2+2xyz2−2xy2−xyz2−xyz2)=(ydx−xdy−xydz)/0ydx−xdy−xydz=0dx/x−dy/y−dz=0lnx−lny−z=cz=ln(x/y)+C2)
yz(z2+2z−2y)=x2yz3+2yz2−2y2z=x2Differentiate respect to x:
3yz2p+4yzp−2y2p=2xpy(3z2+4z−2y)=2xDifferentiate respect to y:
z3+3z2yq+2z2+4yzq−4yz−2y2q=0qy(3z2+4z−2y)+z3+2z2−4yz=0So we have:
3z2+4z−2y=2x/(py)2xq/p+z3+2z2−4yz=0Since
p=1/xq=−1/ythen:
−2x2/y+z3+2z2−4yz=0−2x2+y(z3+2z2−4yz)=0yz(z2+2z−4y)=2x2So:
(z2+2z−4y)/(z2+2z−2y)=2z2+2z−4y=2z2+4z−4yz2+2z=0So we get that the statement can be proved if
z=0or
z=−2
Comments