Question #179473

find the general solution of the equation 2x(y+z^2)p+y(2y+z^2)q=z^3. and deduce that

yz(z^2+yz-2y)=x^2 is a solution


1
Expert's answer
2021-04-15T07:25:30-0400
2x(y+z2)z/x+y(2y+z2)z/y=z22x(y+z^2)\partial z/\partial x+y(2y+z^2)\partial z/\partial y=z^2dx/(2x(y+z2))=dy/(y(2y+z2))=dz/z2dx/(2x(y+z^2))=dy/(y(2y+z^2))=dz/z^2ydx/(2xy2+2xyz2)=xdy/(2xy2+xyz2))=xydz/(xyz2)ydx/(2xy^2+2xyz^2)=xdy/(2xy^2+xyz^2))=xydz/(xyz^2)(ydxxdyxydz)/(2xy2+2xyz22xy2xyz2xyz2)=(ydxxdyxydz)/0(ydx-xdy-xydz)/(2xy^2+2xyz^2-2xy^2-xyz^2-xyz^2)=(ydx-xdy-xydz)/0ydxxdyxydz=0ydx-xdy-xydz=0dx/xdy/ydz=0dx/x-dy/y-dz=0lnxlnyz=clnx-lny-z=cz=ln(x/y)+Cz=ln(x/y)+C

2)


yz(z2+2z2y)=x2yz(z^2+2z-2y)=x^2yz3+2yz22y2z=x2yz^3+2yz^2-2y^2z=x^2

Differentiate respect to x:



3yz2p+4yzp2y2p=2x3yz^2p+4yzp-2y^2p=2xpy(3z2+4z2y)=2xpy(3z^2+4z-2y)=2x

Differentiate respect to y:



z3+3z2yq+2z2+4yzq4yz2y2q=0z^3+3z^2yq+2z^2+4yzq-4yz-2y^2q=0qy(3z2+4z2y)+z3+2z24yz=0qy(3z^2+4z-2y)+z^3+2z^2-4yz=0

So we have:



3z2+4z2y=2x/(py)3z^2+4z-2y=2x/(py)2xq/p+z3+2z24yz=02xq/p+z^3+2z^2-4yz=0

Since



p=1/xp=1/xq=1/yq=-1/y

then:



2x2/y+z3+2z24yz=0-2x^2/y+z^3+2z^2-4yz=02x2+y(z3+2z24yz)=0-2x^2+y(z^3+2z^2-4yz)=0yz(z2+2z4y)=2x2yz(z^2+2z-4y)=2x^2

So:



(z2+2z4y)/(z2+2z2y)=2(z^2+2z-4y)/(z^2+2z-2y)=2z2+2z4y=2z2+4z4yz^2+2z-4y=2z^2+4z-4yz2+2z=0z^2+2z=0

So we get that the statement can be proved if



z=0z=0

or



z=2z=-2

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS