Question #179503

Given the partial differential equation 𝑈𝑡 + 𝑈𝑥𝑥 = 0, 0 < 𝑥 < 𝜋,𝑡 > 0. Use the method of separation of variables to solve the given equation with the following conditions. 𝑈𝑥 (0,𝑡) = 0,𝑡 > 0

𝑈𝑥 (𝜋,𝑡) = 0,𝑡 > 0 𝑈(𝑥, 0) = 𝑥(𝜋 − 𝑥), 0 < 𝑥 < 𝜋


1
Expert's answer
2021-04-15T07:27:47-0400

Given, Ut+Uxx=0,0<x<π,t>0U_t+U_{xx}=0,0<x<\pi,t>0


So, dudt=d2udx2\dfrac{du}{dt}=-\dfrac{d^2u}{dx^2}


Taking fourier sine transform of Above equation-

ddt(usinsxdx)=d2dx2(sinsxdx)\dfrac{d}{dt}(usinsxdx)=-\dfrac{d^2}{dx^2}(sinsxdx)


dusdt=(s2u(0,t)sus), Where us=0usinstdt\dfrac{du_s}{dt}=-(-s^2u(0,t)-su_s) \text{, Where } u_s= \int_0^{\infty}usinstdt


dusdt=s2(0)+sus\dfrac{du_s}{dt}=s^2(0)+su_s


dusus=sdt\dfrac{du_s}{u_s}=-sdt


Integrating and we get,


logus=st+logclogu_s=-st+logc

logusc=stlog\dfrac{u_s}{c}=-st


us=cest      (1)u_s=ce^{-st}~~~~~~-(1)



As us=0πu(x,0)sinsxdxu_s= \int_0^{\pi}u(x,0)sinsxdx



=0πx(πx)sinsxdx=1=\int_0^{\pi}x(\pi-x)sinsxdx=1



From 1 we have, c=1


So us=estu_s=e^{-st}


Now taking inverse fourier transform and we get-


u(x,t)=0πestsinstdsu(x,t)=\int_0^{\pi}e^{-st}sinstds



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS