Given, Ut+Uxx=0,0<x<π,t>0
So, dtdu=−dx2d2u
Taking fourier sine transform of Above equation-
dtd(usinsxdx)=−dx2d2(sinsxdx)
dtdus=−(−s2u(0,t)−sus), Where us=∫0∞usinstdt
dtdus=s2(0)+sus
usdus=−sdt
Integrating and we get,
logus=−st+logc
logcus=−st
us=ce−st −(1)
As us=∫0πu(x,0)sinsxdx
=∫0πx(π−x)sinsxdx=1
From 1 we have, c=1
So us=e−st
Now taking inverse fourier transform and we get-
u(x,t)=∫0πe−stsinstds
Comments