Answer to Question #179544 in Differential Equations for Vikram

Question #179544

1/xy2+y4 is an integrating factor for the differential equation (x2y+y2)dx+(y3-x3)dy=0.

y1/x


1
Expert's answer
2021-04-14T01:03:23-0400

NO(x2y+y2)dx+(y3x3)dy=01xy2+y4((x2y+y2)dx+(y3x3)dy)=0x2y+y2xy2+y4dx+y3x3xy2+y4dy=0y(x2y+y2xy2+y4)=y(x2+yxy+y3)=(xy+y3)(1)(x2+y)(x+3y2)(xy+y3)2=xy+y3x3xy3x2y23y3(xy+y3)2=xy2y3x3xy3x2y2(xy+y3)2x(y3x3xy2+y4)=x(y3x3xy2+y4)=(xy2+y4)(3x2)(y3x3)(y2)(xy+y3)2=y(3x3y3x2y3y4+x3y)(xy+y3)2=2x3y23x2y4y5(xy+y3)2Since   x(y3x3xy2+y4)y(x2y+y2xy2+y4)The integrating factor is not  1xy2+y4\displaystyle \textbf{\textsf{NO}}\\ (x^2y+y^2)\mathrm{d}x+(y^3-x^3)\mathrm{d}y=0\\ \frac{1}{xy^2+y^4}\left((x^2y+y^2)\mathrm{d}x+(y^3-x^3)\mathrm{d}y\right)=0\\ \frac{x^2y+y^2}{xy^2+y^4}\mathrm{d}x+\frac{y^3-x^3}{xy^2+y^4}\mathrm{d}y=0\\ \begin{aligned} \frac{\partial}{\partial y}\left(\frac{x^2y+y^2}{xy^2+y^4}\right) &= \frac{\partial}{\partial y}\left(\frac{x^2+y}{xy+y^3}\right) \\&= \frac{(xy + y^3)(1) - (x^2 + y)(x + 3y^2)}{(xy + y^3)^2} \\&= \frac{xy + y^3 - x^3 - xy - 3x^2y^2 - 3y^3}{(xy + y^3)^2} \\&= \frac{xy - 2y^3 - x^3 - xy - 3x^2y^2}{(xy + y^3)^2} \end{aligned}\\ \begin{aligned} \frac{\partial}{\partial x}\left(\frac{y^3 - x^3}{xy^2+y^4}\right) &= \frac{\partial}{\partial x}\left(\frac{y^3 - x^3}{xy^2+y^4}\right) \\&= \frac{(xy^2 + y^4)(-3x^2) - (y^3 - x^3)(y^2)}{(xy + y^3)^2} \\&= \frac{y(-3x^3y - 3x^2y^3 - y^4 + x^3y)}{(xy + y^3)^2} \\&= \frac{-2x^3y^2 - 3x^2y^4 - y^5}{(xy + y^3)^2} \end{aligned}\\ \textsf{Since}\,\,\,\frac{\partial}{\partial x}\left(\frac{y^3 - x^3}{xy^2+y^4}\right) \neq \frac{\partial}{\partial y}\left(\frac{x^2y+y^2}{xy^2+y^4}\right) \\ \therefore\textsf{The integrating factor is not}\,\,\frac{1}{xy^2+y^4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment