Question #179784

solve dx/2x(y+z^2) = dy/y(2y+z^2) = dz/z^3 find two solutions


1
Expert's answer
2021-04-13T23:30:17-0400

The given equation is incorrect, The correct equation is-


dx2x(y+z2)=dy2y(y+z2)=dzz3\dfrac{dx}{2x(y+z^2)} = \dfrac{dy}{2y(y+z^2)} = \dfrac{dz}{z^3}


Taking first two terms-

dx2x(y+z2)=dy2y(y+z2)\dfrac{dx}{2x(y+z^2)}=\dfrac{dy}{2y(y+z^2)}


dxx=dyy\Rightarrow \dfrac{dx}{x}=\dfrac{dy}{y}


Integrating both the sides-

logx=logy+logc1x=yc1c1=xy     (1)logx=logy+logc_1\\ x=yc_1\\c_1=\dfrac{x}{y}~~~~~-(1)


Taking Last two terms we have-

dy2y(y+z2)=dzz3\dfrac{dy}{2y(y+z^2)}=\dfrac{dz}{z^3}


z3dy2y(y+z2)dz=0\Rightarrow z^3dy-2y(y+z^2)dz=0


Divide both sides by z3y2-z^3y^2


1y2dydz+2zy=2z3-\dfrac{1}{y^2}\dfrac{dy}{dz}+\dfrac{2}{zy}=\dfrac{-2}{z^3}


Let 1y=t    1y2dydz=dtdz\dfrac{1}{y}=t\implies \dfrac{-1}{y^2}\dfrac{dy}{dz}=\dfrac{dt}{dz}


The above equation becomes-


dydz+2tz=2z3\dfrac{dy}{dz}+\dfrac{2t}{z}=\dfrac{-2}{z^3}


On comparing it with Linear differential equation, we get-

P=2z,Q=2z3P=\dfrac{2}{z},Q=\dfrac{-2}{z^3}


Integrated factor, I.F.=eP.dz=e2zdz=e2logz=z2e^{\int P.dz} =e^{\int \dfrac{2}{z}dz} =e^{2logz}=z^2

Its solution is-


t×I.F.=I.F.×Qdzt\times I.F.=\int I.F.\times Q dz


t(z2)=z2×2z3dz\Rightarrow t(z^2)=\int z^2\times \dfrac{-2}{z^3}dz


t×z2=2logz+c2\Rightarrow t\times z^2=-2logz+c_2


c2=z2y+2logz\Rightarrow c_2=\dfrac{z^2}{y}+2logz


The solution of the given equation is-

ϕ(c1,c2)=0ϕ(xy,z2y+2logz)=0\phi(c_1,c_2)=0\\ \phi(\dfrac{x}{y},\dfrac{z^2}{y}+2logz)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS