Given the equation:
"x\u00b2(y-z)p+y\u00b2(z-x)q-z\u00b2(x-y)=0" We can rewrite the equation as:
"x\u00b2(y-z)p+y\u00b2(z-x)q=z\u00b2(x-y)" The above equation is of the form:
"Pp +Qq = R" Where:
"P = x\u00b2(y-z)\\\\\nQ=y\u00b2(z-x)\\\\\nR= z\u00b2(x-y)" The auxilliary equation is of the form:
"\\frac{dx}{P}=\\frac{dy}{Q}=\\frac{dz}{R}" Substituting for P, Q and R:
"\\frac{dx}{x\u00b2(y-z)}=\\frac{dy}{y\u00b2(z-x)}=\\frac{dz}{z\u00b2(x-y)} \\qquad \\cdots eqn (i)"
Solvijng the above:
"\\frac{\\frac{dx}{x\u00b2}}{y-z}=\\frac{\\frac{dy}{y\u00b2}}{z-x}=\\frac{\\frac{dz}{z\u00b2}}{x-y}"
"\\frac{\\frac{dx}{x\u00b2}+\\frac{dy}{y\u00b2}+\\frac{dz}{z\u00b2}}{y-z+ z-x+x-y}=k \\qquad \\text{(say)}\\\\\n\\frac{\\frac{dx}{x\u00b2}+\\frac{dy}{y\u00b2}+\\frac{dz}{z\u00b2}}{0}=k\\\\\n\\implies \\frac{dx}{x\u00b2}+\\frac{dy}{y\u00b2}+\\frac{dz}{z\u00b2}=0" Integratiing through:
"\\int \\frac{dx}{x\u00b2}+\\int \\frac{dy}{y\u00b2}+\\int \\frac{dz}{z\u00b2}=\\int 0\\\\\n-\\frac{1}{x}-\\frac{1}{y}-\\frac{1}{z}= c\\\\\n\\implies c_1 = -\\Big(\\frac{1}{x}+\\frac{1}{y}+\\frac{1}{z} \\Big)"
Also,
"\\frac{\\frac{dx}{x}}{x(y-z)}=\\frac{\\frac{dy}{y}}{y(z-x)}=\\frac{\\frac{dz}{z}}{z(x-y)}\\\\\n\\frac{-\\frac{dx}{x}}{x(z-y)}=\\frac{-\\frac{dy}{y}}{y(x-z)}=\\frac{-\\frac{dz}{z}}{z(y-x)}\\\\\n\\frac{-\\frac{dx}{x} + (-\\frac{dy}{y})+ (-\\frac{dz}{z})}{x(z-y)+y(x-z)+z(y-x)} = k \\qquad \\text{(say)}\\\\\n\\frac{-\\frac{dx}{x} -\\frac{dy}{y}-\\frac{dz}{z}}{xz-xy+xy-yz+yz-xy} = k\\\\\n\\frac{-\\frac{dx}{x} -\\frac{dy}{y}-\\frac{dz}{z}}{0} = k\\\\\n\\implies -\\frac{dx}{x} -\\frac{dy}{y}-\\frac{dz}{z} = 0" Integrating through:
"\\int-\\frac{dx}{x}\\int -\\frac{dy}{y}\\int-\\frac{dz}{z}=\\int 0\\\\\n-\\int\\frac{1}{x}dx-\\int \\frac{1}{y}dy-\\int\\frac{1}{z}dz=\\int 0\\\\\n- \\ln x - \\ln y - \\ln z = \\ln c\\\\\n\\ln x^{-1} + \\ln y^{-1} + \\ln z^{-1} = \\ln c\\\\\n\\ln \\Big(\\frac{1}{x}\\Big) + \\ln \\Big(\\frac{1}{y}\\Big) + \\ln \\Big(\\frac{1}{z}\\Big) = \\ln c\\\\\n\\ln \\Big(\\frac{1}{xyz} \\Big) =\\ln c\\\\\n\\frac{1}{xyz} = c\\\\\n\\implies c_2 = \\frac{1}{xyz}" Therefore, the general solution is:
"f(u,v) = \\Bigg(-\\Big(\\frac{1}{x}+\\frac{1}{y}+\\frac{1}{z} \\Big), \\frac{1}{xyz} \\Bigg) = 0"
Comments
Leave a comment