Question #171245

solve x²(y-z)p+y²(z-x)q=z²(x-y)=0


1
Expert's answer
2021-03-16T04:56:31-0400

Given the equation:


x2(yz)p+y2(zx)qz2(xy)=0x²(y-z)p+y²(z-x)q-z²(x-y)=0

We can rewrite the equation as:


x2(yz)p+y2(zx)q=z2(xy)x²(y-z)p+y²(z-x)q=z²(x-y)

The above equation is of the form:


Pp+Qq=RPp +Qq = R

Where:


P=x2(yz)Q=y2(zx)R=z2(xy)P = x²(y-z)\\ Q=y²(z-x)\\ R= z²(x-y)

The auxilliary equation is of the form:


dxP=dyQ=dzR\frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}

Substituting for P, Q and R:


dxx2(yz)=dyy2(zx)=dzz2(xy)eqn(i)\frac{dx}{x²(y-z)}=\frac{dy}{y²(z-x)}=\frac{dz}{z²(x-y)} \qquad \cdots eqn (i)



Solvijng the above:


dxx2yz=dyy2zx=dzz2xy\frac{\frac{dx}{x²}}{y-z}=\frac{\frac{dy}{y²}}{z-x}=\frac{\frac{dz}{z²}}{x-y}

dxx2+dyy2+dzz2yz+zx+xy=k(say)dxx2+dyy2+dzz20=k    dxx2+dyy2+dzz2=0\frac{\frac{dx}{x²}+\frac{dy}{y²}+\frac{dz}{z²}}{y-z+ z-x+x-y}=k \qquad \text{(say)}\\ \frac{\frac{dx}{x²}+\frac{dy}{y²}+\frac{dz}{z²}}{0}=k\\ \implies \frac{dx}{x²}+\frac{dy}{y²}+\frac{dz}{z²}=0

Integratiing through:


dxx2+dyy2+dzz2=01x1y1z=c    c1=(1x+1y+1z)\int \frac{dx}{x²}+\int \frac{dy}{y²}+\int \frac{dz}{z²}=\int 0\\ -\frac{1}{x}-\frac{1}{y}-\frac{1}{z}= c\\ \implies c_1 = -\Big(\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \Big)

Also,


dxxx(yz)=dyyy(zx)=dzzz(xy)dxxx(zy)=dyyy(xz)=dzzz(yx)dxx+(dyy)+(dzz)x(zy)+y(xz)+z(yx)=k(say)dxxdyydzzxzxy+xyyz+yzxy=kdxxdyydzz0=k    dxxdyydzz=0\frac{\frac{dx}{x}}{x(y-z)}=\frac{\frac{dy}{y}}{y(z-x)}=\frac{\frac{dz}{z}}{z(x-y)}\\ \frac{-\frac{dx}{x}}{x(z-y)}=\frac{-\frac{dy}{y}}{y(x-z)}=\frac{-\frac{dz}{z}}{z(y-x)}\\ \frac{-\frac{dx}{x} + (-\frac{dy}{y})+ (-\frac{dz}{z})}{x(z-y)+y(x-z)+z(y-x)} = k \qquad \text{(say)}\\ \frac{-\frac{dx}{x} -\frac{dy}{y}-\frac{dz}{z}}{xz-xy+xy-yz+yz-xy} = k\\ \frac{-\frac{dx}{x} -\frac{dy}{y}-\frac{dz}{z}}{0} = k\\ \implies -\frac{dx}{x} -\frac{dy}{y}-\frac{dz}{z} = 0

Integrating through:


dxxdyydzz=01xdx1ydy1zdz=0lnxlnylnz=lnclnx1+lny1+lnz1=lncln(1x)+ln(1y)+ln(1z)=lncln(1xyz)=lnc1xyz=c    c2=1xyz\int-\frac{dx}{x}\int -\frac{dy}{y}\int-\frac{dz}{z}=\int 0\\ -\int\frac{1}{x}dx-\int \frac{1}{y}dy-\int\frac{1}{z}dz=\int 0\\ - \ln x - \ln y - \ln z = \ln c\\ \ln x^{-1} + \ln y^{-1} + \ln z^{-1} = \ln c\\ \ln \Big(\frac{1}{x}\Big) + \ln \Big(\frac{1}{y}\Big) + \ln \Big(\frac{1}{z}\Big) = \ln c\\ \ln \Big(\frac{1}{xyz} \Big) =\ln c\\ \frac{1}{xyz} = c\\ \implies c_2 = \frac{1}{xyz}

Therefore, the general solution is:


f(u,v)=((1x+1y+1z),1xyz)=0f(u,v) = \Bigg(-\Big(\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \Big), \frac{1}{xyz} \Bigg) = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS