Given the equation:
x2(y−z)p+y2(z−x)q−z2(x−y)=0 We can rewrite the equation as:
x2(y−z)p+y2(z−x)q=z2(x−y) The above equation is of the form:
Pp+Qq=R Where:
P=x2(y−z)Q=y2(z−x)R=z2(x−y) The auxilliary equation is of the form:
Pdx=Qdy=Rdz Substituting for P, Q and R:
x2(y−z)dx=y2(z−x)dy=z2(x−y)dz⋯eqn(i)
Solvijng the above:
y−zx2dx=z−xy2dy=x−yz2dz
y−z+z−x+x−yx2dx+y2dy+z2dz=k(say)0x2dx+y2dy+z2dz=k⟹x2dx+y2dy+z2dz=0 Integratiing through:
∫x2dx+∫y2dy+∫z2dz=∫0−x1−y1−z1=c⟹c1=−(x1+y1+z1)
Also,
x(y−z)xdx=y(z−x)ydy=z(x−y)zdzx(z−y)−xdx=y(x−z)−ydy=z(y−x)−zdzx(z−y)+y(x−z)+z(y−x)−xdx+(−ydy)+(−zdz)=k(say)xz−xy+xy−yz+yz−xy−xdx−ydy−zdz=k0−xdx−ydy−zdz=k⟹−xdx−ydy−zdz=0 Integrating through:
∫−xdx∫−ydy∫−zdz=∫0−∫x1dx−∫y1dy−∫z1dz=∫0−lnx−lny−lnz=lnclnx−1+lny−1+lnz−1=lncln(x1)+ln(y1)+ln(z1)=lncln(xyz1)=lncxyz1=c⟹c2=xyz1 Therefore, the general solution is:
f(u,v)=(−(x1+y1+z1),xyz1)=0
Comments