Question #171178

(x+y-1)dx+(2x+2y+1)dy=0


1
Expert's answer
2021-03-15T17:05:17-0400

We have,


-(x+y1)dx=(2x+2y+1)dy(x + y -1)dx = (2x + 2y +1)dy


dydx=(x+y1)(2x+2y+1)\dfrac{dy}{dx} = -\dfrac{(x+y-1)}{(2x+2y+1)}


Let x+y=tx+y = t


Differentiating with respect to 'x'


1+dydx=dtdx1 + \dfrac{dy}{dx} = \dfrac{dt}{dx}


(t1)2t+1=dtdx1\dfrac{-(t-1)}{2t+1} = \dfrac{dt}{dx} - 1


1(t1)(2t+1)=dtdx1 - \dfrac{(t -1)}{(2t+1)} = \dfrac{dt}{dx}


dtdx=(2t+1t+1)(2t+1)\dfrac{dt}{dx} = \dfrac{(2t+1-t+1)}{(2t+1)}


(t+2)(2t+1)=t+22(t+12)\dfrac{(t+2)}{(2t+1)} = \dfrac{t+2}{2(t+\dfrac{1}{2})}


2dtdx=t+2t+122\dfrac{dt}{dx} = \dfrac{t+2}{t+\dfrac{1}{2}}


(2t+1)t+2dt=dx\int\dfrac{(2t+1)}{t+2}dt = \int dx


(2t+43)(t+2)dt=dx\int \dfrac{(2t+4-3)}{(t+2)}dt = \int dx


2dt3dtt+2=dx\int 2dt -3 \int \dfrac{dt}{t+2} = \int dx


2t3lnt+2=x+c2t - 3ln|t+2| = x+c


2(x+y)3lnx+y+2=x+c2(x+y) - 3ln|x+y+2| = x+c



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS