We have,
-(x+y−1)dx=(2x+2y+1)dy
dxdy=−(2x+2y+1)(x+y−1)
Let x+y=t
Differentiating with respect to 'x'
1+dxdy=dxdt
2t+1−(t−1)=dxdt−1
1−(2t+1)(t−1)=dxdt
dxdt=(2t+1)(2t+1−t+1)
(2t+1)(t+2)=2(t+21)t+2
2dxdt=t+21t+2
∫t+2(2t+1)dt=∫dx
∫(t+2)(2t+4−3)dt=∫dx
∫2dt−3∫t+2dt=∫dx
2t−3ln∣t+2∣=x+c
2(x+y)−3ln∣x+y+2∣=x+c
Comments