x2y′′−xy′+y=xlnx
This equation is linear, but non-homogeneous. So, at the first step we seek a particular solution of the homogeneous equation x2y′′−xy′+y=0.
We seek a solution of the form y=xα . Then
0=x2y′′−xy′+y=x2α(α−1)xα−2−xαxα−1+xα=(α−1)2xα
If α=1 then we have a solution y=cx , with c be an arbitrary constant.
The second step is variation of constants. We replace the constant c with a function u(x). Then
y=xu
y′=xu′+u
y′′=xu′′+2u′
and the origin equation transforms to the following one:
x2(xu′′+2u′)−x(xu′+u)+xu=xlnx
x3u′′+x2u′=xlnx
xu′′+u′=x−1lnx
(xu′)′=x−1lnx
xu′=∫lnxxdx=21ln2x+c1
u′=21x−1ln2x+c1x−1
u=∫(21x−1ln2x+c1x−1)dx=∫(21ln2x+c1)dlnx=61ln3x+c1lnx+c2
y=xu=61xln3x+c1xlnx+c2x
This is a general solution of ODE.
Comments