Question #170782

(x^2D^2-xD+1)y=xlogx


1
Expert's answer
2021-03-12T06:54:04-0500

x2yxy+y=xlnxx^2 y''-xy'+y=x\ln x

This equation is linear, but non-homogeneous. So, at the first step we seek a particular solution of the homogeneous equation x2yxy+y=0x^2 y''-xy'+y=0.

We seek a solution of the form y=xαy=x^{\alpha} . Then

0=x2yxy+y=x2α(α1)xα2xαxα1+xα=(α1)2xα0=x^2 y''-xy'+y=x^2 \alpha(\alpha-1)x^{\alpha-2} - x\alpha x^{\alpha-1} +x^{\alpha} =(\alpha-1)^2x^{\alpha}

If α=1\alpha=1 then we have a solution y=cxy=cx , with cc be an arbitrary constant.


The second step is variation of constants. We replace the constant cc with a function u(x)u(x). Then

y=xuy=xu

y=xu+uy'=xu'+u

y=xu+2uy''=xu''+2u'

and the origin equation transforms to the following one:

x2(xu+2u)x(xu+u)+xu=xlnxx^2(xu''+2u')-x(xu'+u)+xu=x\ln x

x3u+x2u=xlnxx^3u''+x^2u'=x\ln x

xu+u=x1lnxxu''+u'=x^{-1}\ln x

(xu)=x1lnx(xu')'=x^{-1}\ln x

xu=lnxdxx=12ln2x+c1xu'=\int \ln x \frac{dx}{x}=\frac{1}{2}\ln^2x+c_1

u=12x1ln2x+c1x1u'=\frac{1}{2}x^{-1}\ln^2x+c_1x^{-1}

u=(12x1ln2x+c1x1)dx=(12ln2x+c1)dlnx=16ln3x+c1lnx+c2u=\int( \frac{1}{2}x^{-1}\ln^2x+c_1x^{-1})dx=\int(\frac{1}{2}\ln^2x+c_1)d\ln x=\frac{1}{6}\ln^3 x+c_1\ln x+c_2

y=xu=16xln3x+c1xlnx+c2xy=xu=\frac{1}{6}x\ln^3 x+c_1x\ln x+c_2x

This is a general solution of ODE.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS