(x^2D^2-xD+1)y=xlogx
"x^2 y''-xy'+y=x\\ln x"
This equation is linear, but non-homogeneous. So, at the first step we seek a particular solution of the homogeneous equation "x^2 y''-xy'+y=0".
We seek a solution of the form "y=x^{\\alpha}" . Then
"0=x^2 y''-xy'+y=x^2 \\alpha(\\alpha-1)x^{\\alpha-2} - x\\alpha x^{\\alpha-1} +x^{\\alpha} =(\\alpha-1)^2x^{\\alpha}"
If "\\alpha=1" then we have a solution "y=cx" , with "c" be an arbitrary constant.
The second step is variation of constants. We replace the constant "c" with a function "u(x)". Then
"y=xu"
"y'=xu'+u"
"y''=xu''+2u'"
and the origin equation transforms to the following one:
"x^2(xu''+2u')-x(xu'+u)+xu=x\\ln x"
"x^3u''+x^2u'=x\\ln x"
"xu''+u'=x^{-1}\\ln x"
"(xu')'=x^{-1}\\ln x"
"xu'=\\int \\ln x \\frac{dx}{x}=\\frac{1}{2}\\ln^2x+c_1"
"u'=\\frac{1}{2}x^{-1}\\ln^2x+c_1x^{-1}"
"u=\\int( \\frac{1}{2}x^{-1}\\ln^2x+c_1x^{-1})dx=\\int(\\frac{1}{2}\\ln^2x+c_1)d\\ln x=\\frac{1}{6}\\ln^3 x+c_1\\ln x+c_2"
"y=xu=\\frac{1}{6}x\\ln^3 x+c_1x\\ln x+c_2x"
This is a general solution of ODE.
Comments
Leave a comment