(y-2)dx-(x-y-1)dy=0
(y-2)dx (x-y-1) dy =0
we get
dy/dx=(y-2)/(x-y-1)
let x=u+p; and y=v+r;
dx=du; dy=dv;
dy/dx=[(v+r)-2]/[(u+p)-(v+r)-1]
We get
dv/du[v+(r-2)]/[u-v+(p-r-1)]
thus
r-2=0; hence r=2;
p-r-1=0; hence substituting we get p=3;
x=u+3; y=v+2 ; which becomes
dv/du=v/(u-v);
let v/u =z; implies v=uz
dv/du=z+u (dz/du)
z+u(dz/du)=z/(1-z)
"\\intop" (z-2-z-1)="\\intop" du/u
ln uz=-(1/z)+d
Solve the values of u,v, z, p and r
(y-2)=Ce-[(x-3)/(y-2)]
Comments
Leave a comment