(x^2+y^2)y prime =y^2
Given: "(x^2+y^2)y'=y^2"
"\\Rightarrow (x^2+y^2)\\frac{dy}{dx}=y^2"
"\\Rightarrow \\frac{dx}{dy}=\\frac{x^2+y^2}{y^2}=\\frac{x^2}{y^2}+1"
Take the substitution "x=vy\\Rightarrow \\frac{dx}{dy}=v+y\\frac{dv}{dy}"
Then the given differential equation becomes
"v+y\\frac{dv}{dy}=\\frac{v^2y^2}{y^2}+1=v^2+1"
"\\Rightarrow y\\frac{dv}{dy}=\\frac{v^2y^2}{y^2}+1=v^2-v+1"
Using separation of variables, we get
"\\frac{dv}{v^2-v+1}=\\frac{dy}{y}"
Integrating on both sides, we get
"\\int \\frac{dv}{v^2-v+1}=\\int \\frac{dy}{y}"
"\\int \\frac{dv}{v^2-v+\\frac{1}{4}-\\frac{1}{4}+1}=\\int \\frac{dy}{y}"
"\\int \\frac{dv}{(v-\\frac{1}{2})^2+(\\frac{\\sqrt{3}}{2})^2}=\\int \\frac{dy}{y}"
"\\frac{1}{\\sqrt{3}\/2}arctan(\\frac{v-\\frac{1}{2}}{\\sqrt{3}\/2})=ln(y)+c"
"\\frac{2}{\\sqrt{3}}arctan(\\frac{2v-1}{\\sqrt{3}})=ln(y)+c"
Substituting "v=\\frac{x}{y}" , we get
"\\frac{2}{\\sqrt{3}}arctan(\\frac{2(x\/y)-1}{\\sqrt{3}})=ln(y)+c"
Comments
Leave a comment