Question #163914

(x^2+y^2)y prime =y^2


1
Expert's answer
2021-02-24T07:01:24-0500

Given: (x2+y2)y=y2(x^2+y^2)y'=y^2

(x2+y2)dydx=y2\Rightarrow (x^2+y^2)\frac{dy}{dx}=y^2

dxdy=x2+y2y2=x2y2+1\Rightarrow \frac{dx}{dy}=\frac{x^2+y^2}{y^2}=\frac{x^2}{y^2}+1

Take the substitution x=vydxdy=v+ydvdyx=vy\Rightarrow \frac{dx}{dy}=v+y\frac{dv}{dy}

Then the given differential equation becomes

v+ydvdy=v2y2y2+1=v2+1v+y\frac{dv}{dy}=\frac{v^2y^2}{y^2}+1=v^2+1

ydvdy=v2y2y2+1=v2v+1\Rightarrow y\frac{dv}{dy}=\frac{v^2y^2}{y^2}+1=v^2-v+1

Using separation of variables, we get

dvv2v+1=dyy\frac{dv}{v^2-v+1}=\frac{dy}{y}

Integrating on both sides, we get

dvv2v+1=dyy\int \frac{dv}{v^2-v+1}=\int \frac{dy}{y}

dvv2v+1414+1=dyy\int \frac{dv}{v^2-v+\frac{1}{4}-\frac{1}{4}+1}=\int \frac{dy}{y}

dv(v12)2+(32)2=dyy\int \frac{dv}{(v-\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}=\int \frac{dy}{y}

13/2arctan(v123/2)=ln(y)+c\frac{1}{\sqrt{3}/2}arctan(\frac{v-\frac{1}{2}}{\sqrt{3}/2})=ln(y)+c

23arctan(2v13)=ln(y)+c\frac{2}{\sqrt{3}}arctan(\frac{2v-1}{\sqrt{3}})=ln(y)+c

Substituting v=xyv=\frac{x}{y} , we get

23arctan(2(x/y)13)=ln(y)+c\frac{2}{\sqrt{3}}arctan(\frac{2(x/y)-1}{\sqrt{3}})=ln(y)+c


      


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS