Given: (x2+y2)y′=y2
⇒(x2+y2)dxdy=y2
⇒dydx=y2x2+y2=y2x2+1
Take the substitution x=vy⇒dydx=v+ydydv
Then the given differential equation becomes
v+ydydv=y2v2y2+1=v2+1
⇒ydydv=y2v2y2+1=v2−v+1
Using separation of variables, we get
v2−v+1dv=ydy
Integrating on both sides, we get
∫v2−v+1dv=∫ydy
∫v2−v+41−41+1dv=∫ydy
∫(v−21)2+(23)2dv=∫ydy
3/21arctan(3/2v−21)=ln(y)+c
32arctan(32v−1)=ln(y)+c
Substituting v=yx , we get
32arctan(32(x/y)−1)=ln(y)+c
Comments