y′′+(x−1)+y=0
Applying Power series solution.
Let
y=∑n=0∞anxn
So
y′=∑n=1∞nanxn−1y′′=∑n=2∞n(n−1)anxn−2
Substitute these values for y,y′ and y′′ into the DE.
∑n=2∞n(n−1)anxn−2+(x−1)∑n=1∞nanxn−1+∑n=0∞anxn=0∑n=2∞n(n−1)anxn−2+x∑n=1∞nanxn−1−∑n=1∞nanxn−1+∑n=0∞anxn=0∑n=2∞n(n−1)anxn−2+∑n=1∞nanxn−∑n=1∞nanxn−1+∑n=0∞anxn=0∑n=0∞(n+1)(n+2)an+2xn+∑n=0∞nanxn−∑n=0∞(n+1)an+1xn+1+∑n=0∞anxn=0
Now, equating the coefficients of xn to 0
(n+1)(n+2)an+2+nan−(n+1)an+1+an=0(n+1)(n+2)an+2=(n+1)an+1−(n+1)anan+2=n+2an+1−an
Now putting n=0,1,2,⋯ . We have
a2=−21(a0−a1)a3=31(a2−a1)=−61(a0+a1)a4=41(a3−a2)=121(a0−2a1)⋯
Recall that ;
y(x)=∑n=0∞anxn=a0+a1x+a2x2+a3x3+a4x4+⋯
We will finally have y(x) in terms of a0,a1.
y(x)=a0+a1x−21(a0−a1)x2−61(a0+a1)x3+121(a0−2a1)x4+⋯y(x)=a0(1−21x2−61x3+121x4+⋯)+a1(x+21x2−61x3−61x4+⋯).
Comments