Question #163733

y"+(x-1)y'+y=0


1
Expert's answer
2021-02-24T06:56:45-0500

y+(x1)+y=0y''+(x-1)+y=0

Applying Power series solution.

Let

y=n=0anxny=\sum_{n=0}^\infty a_nx^n

So

y=n=1nanxn1y=n=2n(n1)anxn2y'=\sum_{n=1}^\infty na_nx^{n-1}\\ y''=\sum_{n=2}^\infty n(n-1)a_nx^{n-2}

Substitute these values for y,yy,y' and yy'' into the DE.

n=2n(n1)anxn2+(x1)n=1nanxn1+n=0anxn=0n=2n(n1)anxn2+xn=1nanxn1n=1nanxn1+n=0anxn=0n=2n(n1)anxn2+n=1nanxnn=1nanxn1+n=0anxn=0n=0(n+1)(n+2)an+2xn+n=0nanxnn=0(n+1)an+1xn+1+n=0anxn=0\sum_{n=2}^\infty n(n-1)a_nx^{n-2}+(x-1)\sum_{n=1}^\infty na_nx^{n-1}+\sum_{n=0}^\infty a_nx^n=0\\ \sum_{n=2}^\infty n(n-1)a_nx^{n-2}+x\sum_{n=1}^\infty na_nx^{n-1}-\sum_{n=1}^\infty na_nx^{n-1}+\sum_{n=0}^\infty a_nx^n=0\\ \sum_{n=2}^\infty n(n-1)a_nx^{n-2}+\sum_{n=1}^\infty na_nx^n-\sum_{n=1}^\infty na_nx^{n-1}+\sum_{n=0}^\infty a_nx^n=0\\ \sum_{n=0}^\infty (n+1)(n+2)a_{n+2}x^n+\sum_{n=0}^\infty na_nx^n-\sum_{n=0}^\infty (n+1)a_{n+1}x^{n+1}+\sum_{n=0}^\infty a_nx^n=0\\

Now, equating the coefficients of xnx^n to 0

(n+1)(n+2)an+2+nan(n+1)an+1+an=0(n+1)(n+2)an+2=(n+1)an+1(n+1)anan+2=an+1ann+2(n+1)(n+2)a_{n+2}+na_n-(n+1)a_{n+1}+a_n=0\\ (n+1)(n+2)a_{n+2}=(n+1)a_{n+1}-(n+1)a_n\\ a_{n+2}=\frac{a_{n+1}-a_n}{n+2}

Now putting n=0,1,2,n=0,1,2,\cdots . We have

a2=12(a0a1)a3=13(a2a1)=16(a0+a1)a4=14(a3a2)=112(a02a1)a_2=-\frac{1}{2}(a_0-a_1)\\ a_3=\frac{1}{3}(a_2-a_1)=-\frac{1}{6}(a_0+a_1)\\ a_4=\frac{1}{4}(a_3-a_2)=\frac{1}{12}(a_0-2a_1)\\ \cdots

Recall that ;

y(x)=n=0anxn=a0+a1x+a2x2+a3x3+a4x4+y(x)=\sum_{n=0}^\infty a_nx^n=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+\cdots

We will finally have y(x) in terms of a0,a1.a_0,a_1.

y(x)=a0+a1x12(a0a1)x216(a0+a1)x3+112(a02a1)x4+y(x)=a0(112x216x3+112x4+)+a1(x+12x216x316x4+).y(x)=a_0+a_1x-\frac{1}{2}(a_0-a_1)x^2-\frac{1}{6}(a_0+a_1)x^3+\frac{1}{12}(a_0-2a_1)x^4+\cdots\\ y(x)=a_0(1-\frac{1}{2}x^2-\frac{1}{6}x^3+\frac{1}{12}x^4+\cdots)+a_1(x+\frac{1}{2}x^2-\frac{1}{6}x^3-\frac{1}{6}x^4+\cdots).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS