y"+(x-1)y'+y=0
"y''+(x-1)+y=0"
Applying Power series solution.
Let
"y=\\sum_{n=0}^\\infty a_nx^n"
So
"y'=\\sum_{n=1}^\\infty na_nx^{n-1}\\\\\ny''=\\sum_{n=2}^\\infty n(n-1)a_nx^{n-2}"
Substitute these values for "y,y'" and "y''" into the DE.
"\\sum_{n=2}^\\infty n(n-1)a_nx^{n-2}+(x-1)\\sum_{n=1}^\\infty na_nx^{n-1}+\\sum_{n=0}^\\infty a_nx^n=0\\\\\n\\sum_{n=2}^\\infty n(n-1)a_nx^{n-2}+x\\sum_{n=1}^\\infty na_nx^{n-1}-\\sum_{n=1}^\\infty na_nx^{n-1}+\\sum_{n=0}^\\infty a_nx^n=0\\\\\n\\sum_{n=2}^\\infty n(n-1)a_nx^{n-2}+\\sum_{n=1}^\\infty na_nx^n-\\sum_{n=1}^\\infty na_nx^{n-1}+\\sum_{n=0}^\\infty a_nx^n=0\\\\\n\\sum_{n=0}^\\infty (n+1)(n+2)a_{n+2}x^n+\\sum_{n=0}^\\infty na_nx^n-\\sum_{n=0}^\\infty (n+1)a_{n+1}x^{n+1}+\\sum_{n=0}^\\infty a_nx^n=0\\\\"
Now, equating the coefficients of "x^n" to 0
"(n+1)(n+2)a_{n+2}+na_n-(n+1)a_{n+1}+a_n=0\\\\\n(n+1)(n+2)a_{n+2}=(n+1)a_{n+1}-(n+1)a_n\\\\\na_{n+2}=\\frac{a_{n+1}-a_n}{n+2}"
Now putting "n=0,1,2,\\cdots" . We have
"a_2=-\\frac{1}{2}(a_0-a_1)\\\\\na_3=\\frac{1}{3}(a_2-a_1)=-\\frac{1}{6}(a_0+a_1)\\\\\na_4=\\frac{1}{4}(a_3-a_2)=\\frac{1}{12}(a_0-2a_1)\\\\\n\\cdots"
Recall that ;
"y(x)=\\sum_{n=0}^\\infty a_nx^n=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+\\cdots"
We will finally have y(x) in terms of "a_0,a_1."
"y(x)=a_0+a_1x-\\frac{1}{2}(a_0-a_1)x^2-\\frac{1}{6}(a_0+a_1)x^3+\\frac{1}{12}(a_0-2a_1)x^4+\\cdots\\\\\ny(x)=a_0(1-\\frac{1}{2}x^2-\\frac{1}{6}x^3+\\frac{1}{12}x^4+\\cdots)+a_1(x+\\frac{1}{2}x^2-\\frac{1}{6}x^3-\\frac{1}{6}x^4+\\cdots)."
Comments
Leave a comment