x(y − z)p + y(z − x)q = z(x − y)
x(y−z)p+y(z−x)q=z(x−y)dxx(y−z)=dyy(z−x)=dzz(x−y)Choosing (1x,1y,1z) as multipliersdxx+dyy+dzz=0∫dxx+∫dyy+∫dzz=0ln(x)+ln(y)+ln(z)=Cln(xyz)=Cxyz=CChoosing (1,1,1) as multipliers∫dx+∫dy+∫dz=0x+y+z=C∴The solution to the PDE is ϕ(x+y+z,xyz)=0.\displaystyle x(y - z)p + y(z - x)q = z(x -y) \\ \frac{\mathrm{d}x}{x(y - z)} = \frac{\mathrm{d}y}{y(z - x)} = \frac{\mathrm{d}z}{z(x -y)} \\ \textsf{Choosing}\,\, \left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)\,\, \textsf{as multipliers} \\ \frac{\mathrm{d}x}{x} + \frac{\mathrm{d}y}{y} + \frac{\mathrm{d}z}{z} = 0 \\ \int \frac{\mathrm{d}x}{x} + \int \frac{\mathrm{d}y}{y} + \int \frac{\mathrm{d}z}{z} = 0 \\ \ln(x) + \ln(y) + \ln(z) = C \\ \ln(xyz) = C \\ xyz = C \\ \textsf{Choosing}\,\, (1, 1, 1) \,\, \textsf{as multipliers} \\ \int\mathrm{d}x + \int\mathrm{d}y + \int\mathrm{d}z = 0\\ x + y + z = C \\ \therefore \textsf{The solution to the PDE is}\,\,\, \phi(x + y + z, xyz) = 0.x(y−z)p+y(z−x)q=z(x−y)x(y−z)dx=y(z−x)dy=z(x−y)dzChoosing(x1,y1,z1)as multipliersxdx+ydy+zdz=0∫xdx+∫ydy+∫zdz=0ln(x)+ln(y)+ln(z)=Cln(xyz)=Cxyz=CChoosing(1,1,1)as multipliers∫dx+∫dy+∫dz=0x+y+z=C∴The solution to the PDE isϕ(x+y+z,xyz)=0.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments