x(y − z)p + y(z − x)q = z(x − y)
"\\displaystyle\nx(y - z)p + y(z - x)q = z(x -y) \\\\\n\n\\frac{\\mathrm{d}x}{x(y - z)} = \\frac{\\mathrm{d}y}{y(z - x)} = \\frac{\\mathrm{d}z}{z(x -y)} \\\\\n\n\\textsf{Choosing}\\,\\, \\left(\\frac{1}{x}, \\frac{1}{y}, \\frac{1}{z}\\right)\\,\\, \\textsf{as multipliers} \\\\\n\n\\frac{\\mathrm{d}x}{x} + \\frac{\\mathrm{d}y}{y} + \\frac{\\mathrm{d}z}{z} = 0 \\\\\n\n\\int \\frac{\\mathrm{d}x}{x} + \\int \\frac{\\mathrm{d}y}{y} + \\int \\frac{\\mathrm{d}z}{z} = 0 \\\\\n\n\\ln(x) + \\ln(y) + \\ln(z) = C \\\\\n\n\\ln(xyz) = C \\\\\n\nxyz = C \\\\\n\n\\textsf{Choosing}\\,\\, (1, 1, 1) \\,\\, \\textsf{as multipliers} \\\\\n\n\\int\\mathrm{d}x + \\int\\mathrm{d}y + \\int\\mathrm{d}z = 0\\\\\n\nx + y + z = C \\\\\n\n\\therefore \\textsf{The solution to the PDE is}\\,\\,\\, \\phi(x + y + z, xyz) = 0."
Comments
Leave a comment