Question #163538

x(y − z)p + y(z − x)q = z(x − y)


1
Expert's answer
2021-02-24T07:05:13-0500

x(yz)p+y(zx)q=z(xy)dxx(yz)=dyy(zx)=dzz(xy)Choosing(1x,1y,1z)as multipliersdxx+dyy+dzz=0dxx+dyy+dzz=0ln(x)+ln(y)+ln(z)=Cln(xyz)=Cxyz=CChoosing(1,1,1)as multipliersdx+dy+dz=0x+y+z=CThe solution to the PDE isϕ(x+y+z,xyz)=0.\displaystyle x(y - z)p + y(z - x)q = z(x -y) \\ \frac{\mathrm{d}x}{x(y - z)} = \frac{\mathrm{d}y}{y(z - x)} = \frac{\mathrm{d}z}{z(x -y)} \\ \textsf{Choosing}\,\, \left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)\,\, \textsf{as multipliers} \\ \frac{\mathrm{d}x}{x} + \frac{\mathrm{d}y}{y} + \frac{\mathrm{d}z}{z} = 0 \\ \int \frac{\mathrm{d}x}{x} + \int \frac{\mathrm{d}y}{y} + \int \frac{\mathrm{d}z}{z} = 0 \\ \ln(x) + \ln(y) + \ln(z) = C \\ \ln(xyz) = C \\ xyz = C \\ \textsf{Choosing}\,\, (1, 1, 1) \,\, \textsf{as multipliers} \\ \int\mathrm{d}x + \int\mathrm{d}y + \int\mathrm{d}z = 0\\ x + y + z = C \\ \therefore \textsf{The solution to the PDE is}\,\,\, \phi(x + y + z, xyz) = 0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS