Question #163888

A particle of mass 5kg moves along x-axis under the influence of two forces;force of attraction to the origin which is numerically equal to 40 times the instantaneous distance from the origin and damping force is proportional to instantaneous speed; when the speed is 10m/s the damping is 200. Assuming that the particle from rest at a distance of 20cm from the origin then

a)Write the differential equations

b)Find the position at any given time t

c) Determine the amplitude, frequency and period of the damping oscillation.




1
Expert's answer
2021-02-24T06:59:35-0500

Solution:

(a):

Given, when the speed is 10m/s the damping is 200 N.

Constant of proportionality 20010=20\dfrac{200}{10}=20 N-s/m

So, making an equation using given forces as follows:

5a=40x20v5a=-40x-20v , where a is acceleration, x is displacement and v is velocity.

a+4v+8x=0d2xdt2+4dxdt+8x=0\Rightarrow a+4v+8x=0 \\ \Rightarrow \dfrac{d^2x}{dt^2}+4\dfrac{dx}{dt}+8x=0

Required differential equation is d2xdt2+4dxdt+8x=0\dfrac{d^2x}{dt^2}+4\dfrac{dx}{dt}+8x=0

(b):

Now, solving this differential equation to get its position.

Its auxiliary equation is D2+4D+8=0D^2+4D+8=0

D=4±424(8)2=4±322=4±4i22\Rightarrow D=\dfrac{-4\pm\sqrt{4^2-4(8)}}{2}=\dfrac{-4\pm\sqrt{-32}}{2}=\dfrac{-4\pm4i\sqrt{2}}{2}

D=2±22i\Rightarrow D=-2\pm2\sqrt{2}i

Thus, its general solution is: x(t)=e2t(c1cos22t+c2sin22t)x(t)=e^{-2t}(c_1\cos 2\sqrt2t+c_2\sin 2\sqrt2t)

Or x(t)=Re2tcos(22tθ)x(t)=Re^{-2t}\cos (2\sqrt2t-\theta) ...(i)

Now, put t=0,x=20 cm=0.2 mt=0,x=20\ cm=0.2\ m

0.2=Re0cos(0θ)Rcosθ=0.20.2=Re^{0}\cos (0-\theta) \\ \Rightarrow R\cos \theta=0.2 ...(ii)

Differentiating (i) w.r.t t, we get,

x(t)=(2)Re2tcos(22tθ)Re2tsin(22tθ)(22)x'(t)=(-2)Re^{-2t}\cos (2\sqrt2t-\theta)-Re^{-2t}\sin (2\sqrt2t-\theta)(2\sqrt2)

Also, dxdt=0, when t=0\frac{dx}{dt}=0,\ when\ t=0 . Putting these values, we get,

0=(2)Re0cos(0θ)Re0sin(0θ)(22)0=(2)Rcos(θ)+Rsin(θ)(22)0=(-2)Re^{0}\cos (0-\theta)-Re^{0}\sin (0-\theta)(2\sqrt2) \\ 0=(-2)R\cos (\theta)+R\sin (\theta)(2\sqrt2)

0=(2)0.2+0.2cosθsin(θ)(22)0=(-2)0.2+\dfrac{0.2}{\cos\theta}\sin (\theta)(2\sqrt2) [Using (ii)]

1=tanθ(2)1=\tan\theta(\sqrt2)

12=tanθ\dfrac1{\sqrt2}=\tan\theta

θ=35.26°\Rightarrow \theta=35.26\degree

Put this in (ii)

Rcos35.26°=0.2R\cos 35.26\degree=0.2

R(0.8165)=0.2R(0.8165)=0.2

R=0.24490.25R=0.2449\approx0.25

Hence, the position at any time t is: x(t)=0.25e2tcos(22t35.26°)x(t)=0.25e^{-2t}\cos (2\sqrt2t-35.26\degree)

(c):

Amplitude=0.25e2t m=0.25e^{-2t}\ m

Period=2π22=π2 s=\dfrac{2\pi}{2\sqrt2}=\dfrac{\pi}{\sqrt2} \ s

Frequency=2π Hz=\dfrac{\sqrt2}{\pi} \ Hz


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS