Question #163336

Solve and find particular solution of the first order non-linear differential equation of Bernoulli’s type with given condition.

 


1
Expert's answer
2021-02-23T11:35:19-0500

Solution:


the first-order non-linear differential equation of Bernoulli’s type is


dydx+P(x)y=Q(x)yn.\dfrac{dy}{dx}+P(x)y=Q(x)y^n.


where p(x) and q(x) are continuous functions on the interval we’re working on and n is a real number. Differential equations in this form are called Bernoulli Equations.


Example:


Find the solution of the differential equation 4xyy=y2+x24 x y y ′ = y ^2 + x ^2, satisfying the initial condition y(1)=1.


Solution:


First, we should check whether this differential equation is a Bernoulli equation:




4xyy=y2+x2,    4xyy4xyy24xy=x24xy,    yy4x=x4y4xyy'=y^2+x^2,\;\rightarrow\;\dfrac{4xyy'}{4xy}-\dfrac{y^2}{4xy}=\dfrac{x^2}{4xy},\;\rightarrow\;y'-\dfrac{y}{4x}=\dfrac{x}{4y}

As it can be seen, we have a Bernoulli equation with the parameter m=−1. Hence, we can make the substitution z=y1m=y2.z=y^{1-m}=y^2. The derivative of the function is z=2yy.z'=2yy'. Next, we multiply both sides of the differential equation by 2y:



2yy2y24x=2xy4y,    2yyy22x=x2.2yy'-\dfrac{2y^2}{4x}=\dfrac{2xy}{4y}, \;\rightarrow\;2yy'-\dfrac{y^2}{2x}=\dfrac{x}{2}.


By replacing y with z, we can convert the Bernoulli equation into the linear differential equation:

z=z2x=x2.z'=\dfrac{z}{2x}=\dfrac{x}{2}.

Calculate the integrating factor:



u(x)=e(12x)dx=e12dxx=e12lnx=1xu(x)=e^{\int(-\frac{1}{2x})dx}=e^{{-\frac{1}{2}\int-\frac{dx}x}}=e^{-\frac{1}{2}ln|x|}=\dfrac{1}{\sqrt{|x|}}

Let`s choose the function u(x)=1xu(x)=\dfrac{1}{\sqrt{x}} and make sure that the left side of the equation becomes the derivative of the product z(x) u(x) after multiplying by u(x):


(zz2x)u(x)=z  1xz2x1x=z1xz12x32=z1xzx322=z1x+z(x12)=z1x+z(1x)=(z1x)(z'-\dfrac{z}{2x})u(x)=z'\;\cdot\dfrac{1}{\sqrt{x}}-\dfrac{z}{2x}\cdot \dfrac{1}{\sqrt{x}}=z'\cdot\dfrac{1}{\sqrt{x}}-z\cdot\dfrac{1}{2x^{\frac{3}{2}}}=z'\cdot\dfrac{1}{\sqrt{x}}-z\cdot\dfrac{x^{-\frac{3}{2}}}{2}=z'\cdot\dfrac{1}{\sqrt{x}}+z\cdot(x^{\frac{1}{2}})'=z'\cdot\dfrac{1}{\sqrt{x}}+z\cdot(\dfrac{1}{\sqrt{x}})'=(z\cdot\dfrac{1}{\sqrt{x}})'


Find the general solution of the linear equation:


z=u(x)f(x)dx+Cu(x)=1xx2dx+C1x=12xdx+C1x=x[122x323+C]=x23+Cx.z=\dfrac{\int u(x)f(x)dx+C}{u(x)}=\dfrac{\int \dfrac{1}{\sqrt{x}}\cdot\frac{x}{2}dx+C}{\dfrac{1}{\sqrt{x}}}=\dfrac{\frac{1}{2}\int \sqrt{x}dx+C}{\dfrac{1}{\sqrt{x}}}=\sqrt{x}[\dfrac{1}{2}\cdot \dfrac{2x^{\frac{3}{2}}}{3}+C]=\dfrac{x^2}{3}+C\sqrt{x}.


Taking into account that z=y2, we obtain the following solution:



y=±x23+Cx.y=\plusmn\sqrt{\dfrac{x^2}{3}+C\sqrt{x}}.

Now we determine the value of the constant C

 that matches the initial condition y(1)=1. We see that only a solution with a positive sign satisfies this condition. Hence,


y=123+C1=13+C=1.y=\sqrt{\dfrac{1^2}{3}+C\sqrt{1}}=\sqrt{\dfrac{1}{3}+C}=1.

This gives: C=23.C=\dfrac{2}{3}.



y=x23+2x3.y=\sqrt{\dfrac{x^2}{3}+\dfrac{2\sqrt{x}}{3}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS