What is the solution for homogeneous equation (2x+y)2dx=xydy
What is the solution for homogeneous equation (2x+y)2dx=xydy
Solution:
"y=ux" , "dy=udx+xdu" .
"(2x+ux)^2dx=x^2u(udx+xdu)"
"4x^2(1+u)dx=ux^3du"
"4\\displaystyle\\frac{dx}{x}=\\frac{u}{1+u}du"
"4\\displaystyle\\frac{dx}{x}=(1-\\frac{1}{1+u})du"
"\\ln{C}+4\\ln{|x|}=u-\\ln{|1+u|}"
"Cx^4=\\displaystyle\\frac{e^u}{1+u}"
"Cx^4=\\displaystyle\\frac{e^\\frac yx}{1+\\frac yx}"
"Cx^5=\\displaystyle\\frac{e^\\frac yx}{x+y}"
Answer: "Cx^5=\\displaystyle\\frac{e^\\frac yx}{x+y}" .
Comments
Leave a comment