Question #163080

A model corresponding to the cooperative interaction between two species x and y

is given by

dx/dt=(4-2x+y)x

dy/dt=(4+x-2y)y

Find all the equilibrium points of the system and discuss the stability of the system at

these points.


1
Expert's answer
2021-03-05T00:05:10-0500

Equilibrium points occur when both dx/dt = 0 and dy/dt = 0.


(42x+y)x=0(4-2x+y)x=0

(4+x2y)y=0(4+x-2y)y=0

x=0:4+02y=0=>y=2x=0: 4+0-2y=0=>y=2

Point (0,2)(0, 2)


y=0:42x+0=0=>x=2y=0: 4-2x+0=0=>x=2

Point (2,0)(2, 0)


42x+y=04+x2y=0\begin{matrix} 4-2x+y=0 \\ 4+x-2y=0 \end{matrix}

x=4,y=4x=4, y=4

Point (4,4)(4,4)


J=[44x+yxy4+x4y]J=\begin{bmatrix} 4-4x+y & x \\ y & 4+x-4y \end{bmatrix}

Point (0,2)(0, 2)


J=[6024]J=\begin{bmatrix} 6 & 0 \\ 2 & -4 \end{bmatrix}

Find the eigenvalues


6λ024λ\begin{vmatrix} 6-\lambda & 0 \\ 2 & -4-\lambda \end{vmatrix}

(6λ)(4λ)=0( 6-\lambda)( -4-\lambda)=0

λ1=6>0,λ2=4<0\lambda_1=6>0, \lambda_2=-4<0

The equilibrium point (0,2)(0, 2) is unstable.


Point (2,0)(2, 0)

J=[4206]J=\begin{bmatrix} -4 & 2 \\ 0 & 6 \end{bmatrix}


Find the eigenvalues


4λ206λ\begin{vmatrix} -4-\lambda & 2 \\ 0 & 6-\lambda \end{vmatrix}

(4λ)(6λ)=0( -4-\lambda)(6-\lambda)=0

λ1=6>0,λ2=4<0\lambda_1=6>0, \lambda_2=-4<0

The equilibrium point (2,0)(2, 0) is unstable.


Point (4,4)(4, 4)

J=[8448]J=\begin{bmatrix} -8 & 4 \\ 4 & -8 \end{bmatrix}


Find the eigenvalues


8λ448λ\begin{vmatrix} -8-\lambda & 4 \\ 4 & -8-\lambda \end{vmatrix}

(8λ)(8λ)16=0( -8-\lambda)(-8-\lambda)-16=0

λ1=12<0,λ2=4<0\lambda_1=-12<0, \lambda_2=-4<0

The equilibrium point (4,4)(4, 4) is stable.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS