Equilibrium points occur when both dx/dt = 0 and dy/dt = 0.
(4−2x+y)x=0
(4+x−2y)y=0 x=0:4+0−2y=0=>y=2
Point (0,2)
y=0:4−2x+0=0=>x=2
Point (2,0)
4−2x+y=04+x−2y=0 x=4,y=4
Point (4,4)
J=[4−4x+yyx4+x−4y]
Point (0,2)
J=[620−4]
Find the eigenvalues
∣∣6−λ20−4−λ∣∣
(6−λ)(−4−λ)=0
λ1=6>0,λ2=−4<0 The equilibrium point (0,2) is unstable.
Point (2,0)
J=[−4026]
Find the eigenvalues
∣∣−4−λ026−λ∣∣
(−4−λ)(6−λ)=0
λ1=6>0,λ2=−4<0 The equilibrium point (2,0) is unstable.
Point (4,4)
J=[−844−8]
Find the eigenvalues
∣∣−8−λ44−8−λ∣∣
(−8−λ)(−8−λ)−16=0
λ1=−12<0,λ2=−4<0 The equilibrium point (4,4) is stable.
Comments