A model corresponding to the cooperative interaction between two species x and y
is given by
dx/dt=(4-2x+y)x
dy/dt=(4+x-2y)y
Find all the equilibrium points of the system and discuss the stability of the system at
these points.
Equilibrium points occur when both dx/dt = 0 and dy/dt = 0.
"(4+x-2y)y=0"
"x=0: 4+0-2y=0=>y=2"
Point "(0, 2)"
"y=0: 4-2x+0=0=>x=2"
Point "(2, 0)"
"x=4, y=4"
Point "(4,4)"
Point "(0, 2)"
Find the eigenvalues
"( 6-\\lambda)( -4-\\lambda)=0"
"\\lambda_1=6>0, \\lambda_2=-4<0"
The equilibrium point "(0, 2)" is unstable.
Point "(2, 0)"
"J=\\begin{bmatrix}\n -4 & 2 \\\\\n 0 & 6\n\\end{bmatrix}"Find the eigenvalues
"( -4-\\lambda)(6-\\lambda)=0"
"\\lambda_1=6>0, \\lambda_2=-4<0"
The equilibrium point "(2, 0)" is unstable.
Point "(4, 4)"
"J=\\begin{bmatrix}\n -8 & 4 \\\\\n 4 & -8\n\\end{bmatrix}"Find the eigenvalues
"( -8-\\lambda)(-8-\\lambda)-16=0"
"\\lambda_1=-12<0, \\lambda_2=-4<0"
The equilibrium point "(4, 4)" is stable.
Comments
Leave a comment