Question #162393

(3x2 +y2)dy = (-x2- 3y2)dx


1
Expert's answer
2021-02-16T12:35:28-0500

Solution.

(3x2+y2)dy=(x23y2)dx.(3x^2+y^2)dy=(-x^2-3y^2)dx.

This is a homogeneous nonlinear differential equation of the first order. Divide both parts of the equation by dx:dx:

(3x2+y2)dydx=x23y2,or (3x2+y2)y=x23y2.(3x^2+y^2)\frac{dy}{dx}=-x^2-3y^2, \text{or } (3x^2+y^2)y'=-x^2-3y^2.

Make a replacement

u(x)=y(x)x,u(x)=\frac{y(x)}{x}, from here y(x)=xu(x),y(x)=xu(x), and y=u(x)+xu(x).y'=u(x)+xu'(x).

Substitute the obtained expressions in our equation:

(3x2+x2u2)(u+xu)+x2+3x2u2=0,(3x^2+x^2u^2)(u+xu')+x^2+3x^2u^2=0,

x3u2u+3x3u+x2u3+3x2u2+3x2u+x2=0,x^3u^2u'+3x^3u'+x^2u^3+3x^2u^2+3x^2u+x^2=0,

x3u(u2+3)+x2(u3+3u2+3u+1)=0.x^3u'(u^2+3)+x^2(u^3+3u^2+3u+1)=0.

Divide both parts of the equation by u3+3u2+3u+1u^3+3u^2+3u+1 and write the equation in the form:


(u2+3)uu3+3u2+3u+1=1x.\frac{(u^2+3)u'}{u^3+3u^2+3u+1}=-\frac{1}{x}.

Thus we obtain a differential equation with dividing terms. Let's solve it:


dx(u2+3)dudxu3+3u2+3u+1=dxx,\frac{dx(u^2+3)\frac{du}{dx}}{u^3+3u^2+3u+1}=-\frac{dx}{x},

du(u2+3)u3+3u2+3u+1=dxx,\frac{du(u^2+3)}{u^3+3u^2+3u+1}=-\frac{dx}{x},

u2+3u3+3u2+3u+1du=1xdx,\int\frac{u^2+3}{u^3+3u^2+3u+1}du=\int-\frac{1}{x}dx,

2uu2+2u+1+ln(u+1)=lnx+C,\frac{2u}{u^2+2u+1}+\ln(u+1)=-\ln{x}+C,

where C - some constant.

Returning to the replacement we obtain the solution of the given equation:


2y(x)x(1+2y(x)x+y2(x)x2)+ln(1+y(x)x)=lnx+C,\frac{2y(x)}{x(1+\frac{2y(x)}{x}+\frac{y^2(x)}{x^2})}+\ln(1+\frac{y(x)}{x})=-\ln{x}+C,

or


2xy(x)(y(x)+x)2+ln(1+y(x)x)=lnx+C.\frac{2xy(x)}{(y(x)+x)^2}+\ln(1+\frac{y(x)}{x})=-\ln{x}+C.

Answer.

2xy(x)(y(x)+x)2+ln(1+y(x)x)=lnx+C.\frac{2xy(x)}{(y(x)+x)^2}+\ln(1+\frac{y(x)}{x})=-\ln{x}+C.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS