Solution.
(3x2+y2)dy=(−x2−3y2)dx.This is a homogeneous nonlinear differential equation of the first order. Divide both parts of the equation by dx:
(3x2+y2)dxdy=−x2−3y2,or (3x2+y2)y′=−x2−3y2.
Make a replacement
u(x)=xy(x), from here y(x)=xu(x), and y′=u(x)+xu′(x).
Substitute the obtained expressions in our equation:
(3x2+x2u2)(u+xu′)+x2+3x2u2=0,
x3u2u′+3x3u′+x2u3+3x2u2+3x2u+x2=0,
x3u′(u2+3)+x2(u3+3u2+3u+1)=0.
Divide both parts of the equation by u3+3u2+3u+1 and write the equation in the form:
u3+3u2+3u+1(u2+3)u′=−x1. Thus we obtain a differential equation with dividing terms. Let's solve it:
u3+3u2+3u+1dx(u2+3)dxdu=−xdx,
u3+3u2+3u+1du(u2+3)=−xdx,
∫u3+3u2+3u+1u2+3du=∫−x1dx,
u2+2u+12u+ln(u+1)=−lnx+C, where C - some constant.
Returning to the replacement we obtain the solution of the given equation:
x(1+x2y(x)+x2y2(x))2y(x)+ln(1+xy(x))=−lnx+C, or
(y(x)+x)22xy(x)+ln(1+xy(x))=−lnx+C.Answer.
(y(x)+x)22xy(x)+ln(1+xy(x))=−lnx+C.
Comments