Question #162731

x(y^2+z)-y(x^2+z)q=(x^2-y^2)z, x+y=0, z=1


1
Expert's answer
2021-02-24T07:28:19-0500

dxx(y2+z)=dyy(x2+z)=dzz(x2y2)\frac{dx}{x(y^2+z)}=\frac{dy}{-y(x^2+z)}=\frac{dz}{z(x^2-y^2)}

xdx+ydydzx2y2+x2zx2y2zy2zx2+zy2=xdx+ydydz0\frac{xdx+ydy-dz}{x^2y^2+x^2z-x^2y^2-zy^2-zx^2+zy^2}=\frac{xdx+ydy-dz}{0}

xdx+ydydz=0xdx+ydy-dz=0

x22+y22z=c1\frac{x^2}{2}+\frac{y^2}{2}-z=c_1


dx/x+dy/y+dz/zy2+zx2z+x2y2=dx/x+dy/y+dz/z0\frac{dx/x+dy/y+dz/z}{y^2+z-x^2-z+x^2-y^2}=\frac{dx/x+dy/y+dz/z}{0}

lnx+lny+lnz=lnc2lnx+lny+lnz=lnc_2

xyz=c2xyz=c_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS