x(y^2+z)-y(x^2+z)q=(x^2-y^2)z, x+y=0, z=1
dxx(y2+z)=dy−y(x2+z)=dzz(x2−y2)\frac{dx}{x(y^2+z)}=\frac{dy}{-y(x^2+z)}=\frac{dz}{z(x^2-y^2)}x(y2+z)dx=−y(x2+z)dy=z(x2−y2)dz
xdx+ydy−dzx2y2+x2z−x2y2−zy2−zx2+zy2=xdx+ydy−dz0\frac{xdx+ydy-dz}{x^2y^2+x^2z-x^2y^2-zy^2-zx^2+zy^2}=\frac{xdx+ydy-dz}{0}x2y2+x2z−x2y2−zy2−zx2+zy2xdx+ydy−dz=0xdx+ydy−dz
xdx+ydy−dz=0xdx+ydy-dz=0xdx+ydy−dz=0
x22+y22−z=c1\frac{x^2}{2}+\frac{y^2}{2}-z=c_12x2+2y2−z=c1
dx/x+dy/y+dz/zy2+z−x2−z+x2−y2=dx/x+dy/y+dz/z0\frac{dx/x+dy/y+dz/z}{y^2+z-x^2-z+x^2-y^2}=\frac{dx/x+dy/y+dz/z}{0}y2+z−x2−z+x2−y2dx/x+dy/y+dz/z=0dx/x+dy/y+dz/z
lnx+lny+lnz=lnc2lnx+lny+lnz=lnc_2lnx+lny+lnz=lnc2
xyz=c2xyz=c_2xyz=c2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments