x(y^2+z)-y(x^2+z)q=(x^2-y^2)z, x+y=0, z=1
"\\frac{dx}{x(y^2+z)}=\\frac{dy}{-y(x^2+z)}=\\frac{dz}{z(x^2-y^2)}"
"\\frac{xdx+ydy-dz}{x^2y^2+x^2z-x^2y^2-zy^2-zx^2+zy^2}=\\frac{xdx+ydy-dz}{0}"
"xdx+ydy-dz=0"
"\\frac{x^2}{2}+\\frac{y^2}{2}-z=c_1"
"\\frac{dx\/x+dy\/y+dz\/z}{y^2+z-x^2-z+x^2-y^2}=\\frac{dx\/x+dy\/y+dz\/z}{0}"
"lnx+lny+lnz=lnc_2"
"xyz=c_2"
Comments
Leave a comment