solve the given system of differential equations:
dx/dt=2x+2y
dy/dt=x+3
solve the given system of differential equations:
"\\begin{cases}\n \\frac{dx}{dt}=2x+2y \\\\\n \\frac{dy}{dt}=x+3 \n\\end{cases}"
Solution:
From the second equation:
"x=\\frac{dy}{dt}-3" (*)
"\\frac{dx}{dt}=\\frac{d^2y}{dt^2}"
Substitute "x" and "\\frac{dx}{dt}" into the first equation:
"\\frac{d^2y}{dt^2}=2(\\frac{dy}{dt}-3 )+2y"
"\\frac{d^2y}{dt^2}-2\\frac{dy}{dt}-2y=-6" (**)
First find the general solution of the corresponding homogeneous equation:
"\\frac{d^2y_0}{dt^2}-2\\frac{dy_0}{dt}-2y_0=0"
Let's compose and solve the characteristic equation:
"\\lambda^2-2\\lambda-2=0"
"\\lambda_1=1-\\sqrt3" , "\\lambda_2=1+\\sqrt3" .
"y_0=C_1e^{\\lambda_1t}+C_2e^{\\lambda_2t}=C_1e^{(1-\\sqrt3)t}+C_2e^{(1+\\sqrt3)t}" .
Find a typical (specific) solution of the non-homogeneous equation in the form "y_p=A"
Derivatives of the solution: "\\frac{dy_p}{dt}=0" , "\\frac{d^2y_p}{dt^2}=0"
Substitute those "solutions" into the (**):
"-2A=-6"
"A=3"
Add the typical and the complementary solutions to get the complete solution:
"y=y_0+y_p=C_1e^{(1-\\sqrt3)t}+C_2e^{(1+\\sqrt3)t}+3" .
To find "x" substitute "\\frac{dy}{dt}" into the (*):
"x=\\frac{dy}{dt}-3 =C_1(1-\\sqrt3)e^{(1-\\sqrt3)t}+C_2(1+\\sqrt3)e^{(1+\\sqrt3)t}-3"
Answer: "\\begin{cases}\n x =C_1(1-\\sqrt3)e^{(1-\\sqrt3)t}+C_2(1+\\sqrt3)e^{(1+\\sqrt3)t}-3 \\\\\n y=C_1e^{(1-\\sqrt3)t}+C_2e^{(1+\\sqrt3)t}+3\n\\end{cases}"
Comments
Leave a comment