solve the given system of differential equations:
{ d x d t = 2 x + 2 y d y d t = x + 3 \begin{cases}
\frac{dx}{dt}=2x+2y \\
\frac{dy}{dt}=x+3
\end{cases} { d t d x = 2 x + 2 y d t d y = x + 3
Solution:
From the second equation:
x = d y d t − 3 x=\frac{dy}{dt}-3 x = d t d y − 3 (*)
d x d t = d 2 y d t 2 \frac{dx}{dt}=\frac{d^2y}{dt^2} d t d x = d t 2 d 2 y
Substitute x x x and d x d t \frac{dx}{dt} d t d x into the first equation:
d 2 y d t 2 = 2 ( d y d t − 3 ) + 2 y \frac{d^2y}{dt^2}=2(\frac{dy}{dt}-3 )+2y d t 2 d 2 y = 2 ( d t d y − 3 ) + 2 y
d 2 y d t 2 − 2 d y d t − 2 y = − 6 \frac{d^2y}{dt^2}-2\frac{dy}{dt}-2y=-6 d t 2 d 2 y − 2 d t d y − 2 y = − 6 (**)
First find the general solution of the corresponding homogeneous equation:
d 2 y 0 d t 2 − 2 d y 0 d t − 2 y 0 = 0 \frac{d^2y_0}{dt^2}-2\frac{dy_0}{dt}-2y_0=0 d t 2 d 2 y 0 − 2 d t d y 0 − 2 y 0 = 0
Let's compose and solve the characteristic equation:
λ 2 − 2 λ − 2 = 0 \lambda^2-2\lambda-2=0 λ 2 − 2 λ − 2 = 0
λ 1 = 1 − 3 \lambda_1=1-\sqrt3 λ 1 = 1 − 3 , λ 2 = 1 + 3 \lambda_2=1+\sqrt3 λ 2 = 1 + 3 .
y 0 = C 1 e λ 1 t + C 2 e λ 2 t = C 1 e ( 1 − 3 ) t + C 2 e ( 1 + 3 ) t y_0=C_1e^{\lambda_1t}+C_2e^{\lambda_2t}=C_1e^{(1-\sqrt3)t}+C_2e^{(1+\sqrt3)t} y 0 = C 1 e λ 1 t + C 2 e λ 2 t = C 1 e ( 1 − 3 ) t + C 2 e ( 1 + 3 ) t .
Find a typical (specific) solution of the non-homogeneous equation in the form y p = A y_p=A y p = A
Derivatives of the solution: d y p d t = 0 \frac{dy_p}{dt}=0 d t d y p = 0 , d 2 y p d t 2 = 0 \frac{d^2y_p}{dt^2}=0 d t 2 d 2 y p = 0
Substitute those "solutions" into the (**):
− 2 A = − 6 -2A=-6 − 2 A = − 6
A = 3 A=3 A = 3
Add the typical and the complementary solutions to get the complete solution:
y = y 0 + y p = C 1 e ( 1 − 3 ) t + C 2 e ( 1 + 3 ) t + 3 y=y_0+y_p=C_1e^{(1-\sqrt3)t}+C_2e^{(1+\sqrt3)t}+3 y = y 0 + y p = C 1 e ( 1 − 3 ) t + C 2 e ( 1 + 3 ) t + 3 .
To find x x x substitute d y d t \frac{dy}{dt} d t d y into the (*):
x = d y d t − 3 = C 1 ( 1 − 3 ) e ( 1 − 3 ) t + C 2 ( 1 + 3 ) e ( 1 + 3 ) t − 3 x=\frac{dy}{dt}-3 =C_1(1-\sqrt3)e^{(1-\sqrt3)t}+C_2(1+\sqrt3)e^{(1+\sqrt3)t}-3 x = d t d y − 3 = C 1 ( 1 − 3 ) e ( 1 − 3 ) t + C 2 ( 1 + 3 ) e ( 1 + 3 ) t − 3
Answer: { x = C 1 ( 1 − 3 ) e ( 1 − 3 ) t + C 2 ( 1 + 3 ) e ( 1 + 3 ) t − 3 y = C 1 e ( 1 − 3 ) t + C 2 e ( 1 + 3 ) t + 3 \begin{cases}
x =C_1(1-\sqrt3)e^{(1-\sqrt3)t}+C_2(1+\sqrt3)e^{(1+\sqrt3)t}-3 \\
y=C_1e^{(1-\sqrt3)t}+C_2e^{(1+\sqrt3)t}+3
\end{cases} { x = C 1 ( 1 − 3 ) e ( 1 − 3 ) t + C 2 ( 1 + 3 ) e ( 1 + 3 ) t − 3 y = C 1 e ( 1 − 3 ) t + C 2 e ( 1 + 3 ) t + 3
Comments