. y” - y’ - 2y = 1 – 2x - 9e-x
Solution:
We know that the general solution will be the sum of the complementary solution and particular solution.
First we find the complementary solution by solving "\\frac{d^{2} y(x)}{d x^{2}}-\\frac{d y(x)}{d x}-2 y(x)=0" :
Assume a solution will be proportional to "e^{\\lambda x}" for some constant "\\lambda" .
Substitute "y(x)=e^{\\lambda x}" into the differential equation:
"\\frac{d^{2}}{d x^{2}}\\left(e^{\\lambda x}\\right)-\\frac{d}{d x}\\left(e^{\\lambda x}\\right)-2 e^{\\lambda x}=0"
"\\lambda^{2} e^{\\lambda x}-\\lambda e^{\\lambda x}-2 e^{\\lambda x}=0"
"\\left(\\lambda^{2}-\\lambda-2\\right) e^{\\lambda x}=0"
Since "e^{\\lambda x} \\neq 0" for any finite "\\lambda" , the zeros must come from the polynomial:
"\\lambda^{2}-\\lambda-2=0"
"(\\lambda-2)(\\lambda+1)=0"
"\\lambda=-1 \\ or\\ \\lambda=2"
The general solution is the sum of the above solutions:
"y(x)=y_{1}(x)+y_{2}(x)=c_{1} e^{-x}+c_{2} e^{2 x}"
Now we determine the particular solution by the method of undetermined coefficients:
The particular solution will be the sum of the particular solutions to "\\frac{d^{2} y(x)}{d x^{2}}-\\frac{d y(x)}{d x}-2 y(x)=-2 x+1\\ and\\ \\frac{d^{2} y(x)}{d x^{2}}-\\frac{d y(x)}{d x}-2 y(x)=-9 e^{-x}"
The particular solution to "\\frac{d^{2} y(x)}{d x^{2}}-\\frac{d y(x)}{d x}-2 y(x)=-2 x+1" is of the form:
"y_{p_{1}}(x)=a_{1}+a_{2} x"
The particular solution to "\\frac{d^{2} y(x)}{d x^{2}}-\\frac{d y(x)}{d x}-2 y(x)=-9 e^{-x}" is of the form:
"y_{p_{2}}(x)=x\\left(a_{3} e^{-x}\\right)" , where "a_{3} e^{-x}" was multiplied by "x" to account for "e^{-x}" in the complementary solution.
"y_{p}(x)=y_{p_{1}}(x)+y_{p_{2}}(x)=a_{1}+a_{2} x+a_{3} e^{-x} x"
Now, we solve for the unknown constants "a_{1}, a_{2},\\ and\\ a_{3}" :
"\\begin{array}{l}\n\\text { Compute } \\frac{d y_{p}(x)}{d x}: \\\\\n\\frac{d y_{p}(x)}{d x}=\\frac{d}{d x}\\left(a_{1}+a_{2} x+a_{3} e^{-x} x\\right) \\\\\n=a_{2}+a_{3} e^{-x}-a_{3} e^{-x} x \\\\\n\\text { Compute } \\frac{d^{2} y_{p}(x)}{d x^{2}}: \\\\\n\\frac{d^{2} y_{p}(x)}{d x^{2}}=\\frac{d^{2}}{d x^{2}}\\left(a_{1}+a_{2} x+a_{3} e^{-x} x\\right) \\\\\n=a_{3}\\left(-2 e^{-x}+e^{-x} x\\right)\n\\end{array}"
Substitute the particular solution "y_{p}(x)" into the differential equation:
"\\frac{d^{2} y_{p}(x)}{d x^{2}}-\\frac{d y_{p}(x)}{d x}-2 y_{p}(x)=-9 e^{-x}-2 x+1"
"\\begin{array}{l}\n\na_{3}\\left(-2 e^{-x}+e^{-x} x\\right)-\\left(a_{2}+a_{3} e^{-x}-a_{3} e^{-x} x\\right)-2\\left(a_{1}+a_{2} x+a_{3} e^{-x} x\\right) \\\\\n\n\\quad=-9 e^{-x}-2 x+1\n\n\\end{array}"
"-2 a_{1}-a_{2}-3 a_{3} e^{-x}-2 a_{2} x=1-9 e^{-x}-2 x"
On equating the coefficients on both sides of the equation:
"-2 a_{1}-a_{2}=1"
"-3 a_{3}=-9"
"-2 a_{2}=-2"
On solving,
"\\begin{array}{l}\n\na_{1}=-1 \\\\\n\na_{2}=1 \\\\\n\na_{3}=3\n\n\\end{array}"
Substitute
"a_{1}, a_{2},\\ and\\ a_{3}\\ into\\ y_{p}(x)=a_{1}+x a_{2}+e^{-x} x a_{3}\n\\\\ We\\ get\\ \n\\\\\ny_{p}(x)=x+3 e^{-x} x-1"
So, the general solution is: "y(x)=y_{c}(x)+y_{p}(x)=x+3 e^{-x} x+c_{1} e^{-x}+c_{2} e^{2 x}-1"
Comments
Leave a comment