Question #163211

.  y”  -  y’ -   2y  =  1 – 2x - 9e-x        


1
Expert's answer
2021-02-24T06:52:04-0500

Solution:

We know that the general solution will be the sum of the complementary solution and particular solution.

First we find the complementary solution by solving d2y(x)dx2dy(x)dx2y(x)=0\frac{d^{2} y(x)}{d x^{2}}-\frac{d y(x)}{d x}-2 y(x)=0 :

Assume a solution will be proportional to eλxe^{\lambda x} for some constant λ\lambda .

Substitute y(x)=eλxy(x)=e^{\lambda x} into the differential equation:

d2dx2(eλx)ddx(eλx)2eλx=0\frac{d^{2}}{d x^{2}}\left(e^{\lambda x}\right)-\frac{d}{d x}\left(e^{\lambda x}\right)-2 e^{\lambda x}=0

λ2eλxλeλx2eλx=0\lambda^{2} e^{\lambda x}-\lambda e^{\lambda x}-2 e^{\lambda x}=0

(λ2λ2)eλx=0\left(\lambda^{2}-\lambda-2\right) e^{\lambda x}=0

Since eλx0e^{\lambda x} \neq 0 for any finite λ\lambda , the zeros must come from the polynomial:

λ2λ2=0\lambda^{2}-\lambda-2=0

(λ2)(λ+1)=0(\lambda-2)(\lambda+1)=0

λ=1 or λ=2\lambda=-1 \ or\ \lambda=2

The general solution is the sum of the above solutions:

y(x)=y1(x)+y2(x)=c1ex+c2e2xy(x)=y_{1}(x)+y_{2}(x)=c_{1} e^{-x}+c_{2} e^{2 x}

Now we determine the particular solution by the method of undetermined coefficients:

The particular solution will be the sum of the particular solutions to d2y(x)dx2dy(x)dx2y(x)=2x+1 and d2y(x)dx2dy(x)dx2y(x)=9ex\frac{d^{2} y(x)}{d x^{2}}-\frac{d y(x)}{d x}-2 y(x)=-2 x+1\ and\ \frac{d^{2} y(x)}{d x^{2}}-\frac{d y(x)}{d x}-2 y(x)=-9 e^{-x}

The particular solution to d2y(x)dx2dy(x)dx2y(x)=2x+1\frac{d^{2} y(x)}{d x^{2}}-\frac{d y(x)}{d x}-2 y(x)=-2 x+1 is of the form:

yp1(x)=a1+a2xy_{p_{1}}(x)=a_{1}+a_{2} x

The particular solution to d2y(x)dx2dy(x)dx2y(x)=9ex\frac{d^{2} y(x)}{d x^{2}}-\frac{d y(x)}{d x}-2 y(x)=-9 e^{-x} is of the form:

yp2(x)=x(a3ex)y_{p_{2}}(x)=x\left(a_{3} e^{-x}\right) , where a3exa_{3} e^{-x} was multiplied by xx to account for exe^{-x} in the complementary solution.

yp(x)=yp1(x)+yp2(x)=a1+a2x+a3exxy_{p}(x)=y_{p_{1}}(x)+y_{p_{2}}(x)=a_{1}+a_{2} x+a_{3} e^{-x} x

Now, we solve for the unknown constants a1,a2, and a3a_{1}, a_{2},\ and\ a_{3} :

 Compute dyp(x)dx:dyp(x)dx=ddx(a1+a2x+a3exx)=a2+a3exa3exx Compute d2yp(x)dx2:d2yp(x)dx2=d2dx2(a1+a2x+a3exx)=a3(2ex+exx)\begin{array}{l} \text { Compute } \frac{d y_{p}(x)}{d x}: \\ \frac{d y_{p}(x)}{d x}=\frac{d}{d x}\left(a_{1}+a_{2} x+a_{3} e^{-x} x\right) \\ =a_{2}+a_{3} e^{-x}-a_{3} e^{-x} x \\ \text { Compute } \frac{d^{2} y_{p}(x)}{d x^{2}}: \\ \frac{d^{2} y_{p}(x)}{d x^{2}}=\frac{d^{2}}{d x^{2}}\left(a_{1}+a_{2} x+a_{3} e^{-x} x\right) \\ =a_{3}\left(-2 e^{-x}+e^{-x} x\right) \end{array}

Substitute the particular solution yp(x)y_{p}(x) into the differential equation:

d2yp(x)dx2dyp(x)dx2yp(x)=9ex2x+1\frac{d^{2} y_{p}(x)}{d x^{2}}-\frac{d y_{p}(x)}{d x}-2 y_{p}(x)=-9 e^{-x}-2 x+1

a3(2ex+exx)(a2+a3exa3exx)2(a1+a2x+a3exx)=9ex2x+1\begin{array}{l} a_{3}\left(-2 e^{-x}+e^{-x} x\right)-\left(a_{2}+a_{3} e^{-x}-a_{3} e^{-x} x\right)-2\left(a_{1}+a_{2} x+a_{3} e^{-x} x\right) \\ \quad=-9 e^{-x}-2 x+1 \end{array}

2a1a23a3ex2a2x=19ex2x-2 a_{1}-a_{2}-3 a_{3} e^{-x}-2 a_{2} x=1-9 e^{-x}-2 x

On equating the coefficients on both sides of the equation:

2a1a2=1-2 a_{1}-a_{2}=1

3a3=9-3 a_{3}=-9

2a2=2-2 a_{2}=-2

On solving,

a1=1a2=1a3=3\begin{array}{l} a_{1}=-1 \\ a_{2}=1 \\ a_{3}=3 \end{array}

Substitute

a1,a2, and a3 into yp(x)=a1+xa2+exxa3We get yp(x)=x+3exx1a_{1}, a_{2},\ and\ a_{3}\ into\ y_{p}(x)=a_{1}+x a_{2}+e^{-x} x a_{3} \\ We\ get\ \\ y_{p}(x)=x+3 e^{-x} x-1

So, the general solution is: y(x)=yc(x)+yp(x)=x+3exx+c1ex+c2e2x1y(x)=y_{c}(x)+y_{p}(x)=x+3 e^{-x} x+c_{1} e^{-x}+c_{2} e^{2 x}-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS