Solve and find particular solution of the first order non-linear differential equation of Bernoulli’s type with given condition.
(dy/dx)+(xy/1-x2 )=xy1/2 ; y(0)=1
Solution:
Divide the left and right sides of the equation by y \sqrt y y :
1 y d y d x + x 1 − x 2 y = x \displaystyle\frac{1}{\sqrt y}\frac{dy}{dx}+\frac{x}{1-x^2}\sqrt y=x y 1 d x d y + 1 − x 2 x y = x
y = z \sqrt{y}=z y = z , z ′ = y ′ 2 y z'=\displaystyle\frac{y'}{2 \sqrt y} z ′ = 2 y y ′ , y ′ y = 2 z ′ \displaystyle\frac{y'}{\sqrt y}=2z' y y ′ = 2 z ′ .
2 z ′ + x 1 − x 2 z = x \displaystyle2z'+\frac{x}{1-x^2}z=x 2 z ′ + 1 − x 2 x z = x
z = u v z=uv z = uv , z ′ = u ′ v + v ′ u z'=u'v+v'u z ′ = u ′ v + v ′ u
2 ( u ′ v + v ′ u ) + x 1 − x 2 u v = x \displaystyle2(u'v+v'u)+\frac{x}{1-x^2}uv=x 2 ( u ′ v + v ′ u ) + 1 − x 2 x uv = x
2 u ′ v + u ( 2 v ′ + x 1 − x 2 v ) = x \displaystyle2u'v+u(2v'+\frac{x}{1-x^2}v)=x 2 u ′ v + u ( 2 v ′ + 1 − x 2 x v ) = x
Let's compose and solve the system:
{ 2 v ′ + x 1 − x 2 v = 0 2 u ′ v = x \begin{cases}
2v'+\frac{x}{1-x^2}v=0 \\
2u'v=x
\end{cases} { 2 v ′ + 1 − x 2 x v = 0 2 u ′ v = x
From the first equation:
2 v ′ = − x 1 − x 2 v 2v'=-\frac{x}{1-x^2}v 2 v ′ = − 1 − x 2 x v
2 d v v = − x d x 1 − x 2 2\frac{dv}{v}=-\frac{xdx}{1-x^2} 2 v d v = − 1 − x 2 x d x
2 d v v = − 1 2 d x 2 1 − x 2 2\frac{dv}{v}=-\frac12\frac{dx^2}{1-x^2} 2 v d v = − 2 1 1 − x 2 d x 2
4 ln ∣ v ∣ = ln ∣ 1 − x 2 ∣ 4\ln{|v|}=\ln{|1-x^2|} 4 ln ∣ v ∣ = ln ∣1 − x 2 ∣
v = ( 1 − x 2 ) 1 4 v=(1-x^2)^{\frac14} v = ( 1 − x 2 ) 4 1
Substitute v v v into the second equation:
2 u ′ ( 1 − x 2 ) 1 4 = x 2u'(1-x^2)^{\frac14}=x 2 u ′ ( 1 − x 2 ) 4 1 = x
u = ∫ x d x 2 ( 1 − x 2 ) 1 4 = ∫ d x 2 4 ( 1 − x 2 ) 1 4 = − 1 3 ( 1 − x 2 ) 3 4 + C u=\displaystyle\int\frac{xdx}{2(1-x^2)^{\frac14}}=\displaystyle\int\frac{dx^2}{4(1-x^2)^{\frac14}}=-\frac13(1-x^2)^{\frac34}+C u = ∫ 2 ( 1 − x 2 ) 4 1 x d x = ∫ 4 ( 1 − x 2 ) 4 1 d x 2 = − 3 1 ( 1 − x 2 ) 4 3 + C
z = u v = ( 1 − x 2 ) 1 4 ( − 1 3 ( 1 − x 2 ) 3 4 + C ) = − 1 3 ( 1 − x 2 ) + C ( 1 − x 2 ) 1 4 z=uv=(1-x^2)^{\frac14}(-\frac13(1-x^2)^{\frac34}+C)=-\frac13(1-x^2)+C(1-x^2)^{\frac14} z = uv = ( 1 − x 2 ) 4 1 ( − 3 1 ( 1 − x 2 ) 4 3 + C ) = − 3 1 ( 1 − x 2 ) + C ( 1 − x 2 ) 4 1
y = − 1 3 ( 1 − x 2 ) + C ( 1 − x 2 ) 1 4 \sqrt y=-\frac13(1-x^2)+C(1-x^2)^{\frac14} y = − 3 1 ( 1 − x 2 ) + C ( 1 − x 2 ) 4 1
y ( 0 ) = 1 y(0)=1 y ( 0 ) = 1
1 = − 1 3 ( 1 − 0 2 ) + C ( 1 − 0 2 ) 1 4 \sqrt 1=-\frac13(1-0^2)+C(1-0^2)^{\frac14} 1 = − 3 1 ( 1 − 0 2 ) + C ( 1 − 0 2 ) 4 1
1 = − 1 3 + C 1=-\frac13+C 1 = − 3 1 + C
C = 4 3 C=\frac43 C = 3 4
y = − 1 3 ( 1 − x 2 ) + 4 3 ( 1 − x 2 ) 1 4 \sqrt y=-\frac13(1-x^2)+\frac43(1-x^2)^{\frac14} y = − 3 1 ( 1 − x 2 ) + 3 4 ( 1 − x 2 ) 4 1
Answer: y = − 1 3 ( 1 − x 2 ) + 4 3 ( 1 − x 2 ) 1 4 \sqrt y=-\frac13(1-x^2)+\frac43(1-x^2)^{\frac14} y = − 3 1 ( 1 − x 2 ) + 3 4 ( 1 − x 2 ) 4 1 .
Comments