Solve and find particular solution of the first order non-linear differential equation of Bernoulli’s type with given condition.
(dy/dx)+(xy/1-x2 )=xy1/2 ; y(0)=1
Solution:
Divide the left and right sides of the equation by y :
y1dxdy+1−x2xy=x
y=z , z′=2yy′ , yy′=2z′ .
2z′+1−x2xz=x
z=uv , z′=u′v+v′u
2(u′v+v′u)+1−x2xuv=x
2u′v+u(2v′+1−x2xv)=x
Let's compose and solve the system:
{2v′+1−x2xv=02u′v=x
From the first equation:
2v′=−1−x2xv
2vdv=−1−x2xdx
2vdv=−211−x2dx2
4ln∣v∣=ln∣1−x2∣
v=(1−x2)41
Substitute v into the second equation:
2u′(1−x2)41=x
u=∫2(1−x2)41xdx=∫4(1−x2)41dx2=−31(1−x2)43+C
z=uv=(1−x2)41(−31(1−x2)43+C)=−31(1−x2)+C(1−x2)41
y=−31(1−x2)+C(1−x2)41
y(0)=1
1=−31(1−02)+C(1−02)41
1=−31+C
C=34
y=−31(1−x2)+34(1−x2)41
Answer: y=−31(1−x2)+34(1−x2)41 .
Comments