Solve and find particular solution of the first order non-linear differential equation of Bernoulli’s type with given condition.
(dy/dx)+(xy/1-x2 )=xy1/2 ; y(0)=1
Solve and find particular solution of the first order non-linear differential equation of Bernoulli’s type with given condition.
(dy/dx)+(xy/1-x2 )=xy1/2 ; y(0)=1
Solution:
Divide the left and right sides of the equation by "\\sqrt y" :
"\\displaystyle\\frac{1}{\\sqrt y}\\frac{dy}{dx}+\\frac{x}{1-x^2}\\sqrt y=x"
"\\sqrt{y}=z" , "z'=\\displaystyle\\frac{y'}{2 \\sqrt y}" , "\\displaystyle\\frac{y'}{\\sqrt y}=2z'" .
"\\displaystyle2z'+\\frac{x}{1-x^2}z=x"
"z=uv" , "z'=u'v+v'u"
"\\displaystyle2(u'v+v'u)+\\frac{x}{1-x^2}uv=x"
"\\displaystyle2u'v+u(2v'+\\frac{x}{1-x^2}v)=x"
Let's compose and solve the system:
"\\begin{cases}\n 2v'+\\frac{x}{1-x^2}v=0 \\\\\n 2u'v=x \n\\end{cases}"
From the first equation:
"2v'=-\\frac{x}{1-x^2}v"
"2\\frac{dv}{v}=-\\frac{xdx}{1-x^2}"
"2\\frac{dv}{v}=-\\frac12\\frac{dx^2}{1-x^2}"
"4\\ln{|v|}=\\ln{|1-x^2|}"
"v=(1-x^2)^{\\frac14}"
Substitute "v" into the second equation:
"2u'(1-x^2)^{\\frac14}=x"
"u=\\displaystyle\\int\\frac{xdx}{2(1-x^2)^{\\frac14}}=\\displaystyle\\int\\frac{dx^2}{4(1-x^2)^{\\frac14}}=-\\frac13(1-x^2)^{\\frac34}+C"
"z=uv=(1-x^2)^{\\frac14}(-\\frac13(1-x^2)^{\\frac34}+C)=-\\frac13(1-x^2)+C(1-x^2)^{\\frac14}"
"\\sqrt y=-\\frac13(1-x^2)+C(1-x^2)^{\\frac14}"
"y(0)=1"
"\\sqrt 1=-\\frac13(1-0^2)+C(1-0^2)^{\\frac14}"
"1=-\\frac13+C"
"C=\\frac43"
"\\sqrt y=-\\frac13(1-x^2)+\\frac43(1-x^2)^{\\frac14}"
Answer: "\\sqrt y=-\\frac13(1-x^2)+\\frac43(1-x^2)^{\\frac14}" .
Comments
Leave a comment