Question #163343

Solve and find particular solution of the first order non-linear differential equation of Bernoulli’s type with given condition.

(dy/dx)+(xy/1-x2 )=xy1/2 ; y(0)=1

 


1
Expert's answer
2021-02-24T06:49:11-0500

Solve and find particular solution of the first order non-linear differential equation of Bernoulli’s type with given condition.

(dy/dx)+(xy/1-x2 )=xy1/2 ; y(0)=1

Solution:

Divide the left and right sides of the equation by y\sqrt y :

1ydydx+x1x2y=x\displaystyle\frac{1}{\sqrt y}\frac{dy}{dx}+\frac{x}{1-x^2}\sqrt y=x

y=z\sqrt{y}=z , z=y2yz'=\displaystyle\frac{y'}{2 \sqrt y} , yy=2z\displaystyle\frac{y'}{\sqrt y}=2z' .

2z+x1x2z=x\displaystyle2z'+\frac{x}{1-x^2}z=x

z=uvz=uv , z=uv+vuz'=u'v+v'u

2(uv+vu)+x1x2uv=x\displaystyle2(u'v+v'u)+\frac{x}{1-x^2}uv=x

2uv+u(2v+x1x2v)=x\displaystyle2u'v+u(2v'+\frac{x}{1-x^2}v)=x

Let's compose and solve the system:

{2v+x1x2v=02uv=x\begin{cases} 2v'+\frac{x}{1-x^2}v=0 \\ 2u'v=x \end{cases}

From the first equation:

2v=x1x2v2v'=-\frac{x}{1-x^2}v

2dvv=xdx1x22\frac{dv}{v}=-\frac{xdx}{1-x^2}

2dvv=12dx21x22\frac{dv}{v}=-\frac12\frac{dx^2}{1-x^2}

4lnv=ln1x24\ln{|v|}=\ln{|1-x^2|}

v=(1x2)14v=(1-x^2)^{\frac14}

Substitute vv into the second equation:

2u(1x2)14=x2u'(1-x^2)^{\frac14}=x

u=xdx2(1x2)14=dx24(1x2)14=13(1x2)34+Cu=\displaystyle\int\frac{xdx}{2(1-x^2)^{\frac14}}=\displaystyle\int\frac{dx^2}{4(1-x^2)^{\frac14}}=-\frac13(1-x^2)^{\frac34}+C

z=uv=(1x2)14(13(1x2)34+C)=13(1x2)+C(1x2)14z=uv=(1-x^2)^{\frac14}(-\frac13(1-x^2)^{\frac34}+C)=-\frac13(1-x^2)+C(1-x^2)^{\frac14}

y=13(1x2)+C(1x2)14\sqrt y=-\frac13(1-x^2)+C(1-x^2)^{\frac14}

y(0)=1y(0)=1

1=13(102)+C(102)14\sqrt 1=-\frac13(1-0^2)+C(1-0^2)^{\frac14}

1=13+C1=-\frac13+C

C=43C=\frac43

y=13(1x2)+43(1x2)14\sqrt y=-\frac13(1-x^2)+\frac43(1-x^2)^{\frac14}

Answer: y=13(1x2)+43(1x2)14\sqrt y=-\frac13(1-x^2)+\frac43(1-x^2)^{\frac14} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS