Answer to Question #163913 in Differential Equations for Jay

Question #163913

(x^2+y^2)y'=y^2


1
Expert's answer
2021-02-16T13:46:53-0500

Solution.

(x2+y2)y=y2.(x^2+y^2)y'=y^2.


Make a replacement

u(x)=y(x)x,u(x)=\frac{y(x)}{x}, from here y(x)=xu(x),y(x)=xu(x), and y=u(x)+xu(x).y'=u(x)+xu'(x).

Substitute the obtained expressions into the equation:

(x2+x2u2)(u+xu)=x2u2,(x^2+x^2u^2)(u+xu')=x^2u^2,

x2u+x2u3+x3u+x3u2ux2u2=0,x^2u+x^2u^3+x^3u'+x^3u^2u'-x^2u^2=0,

x3u(1+u2)+x2(u3u2+u)=0.x^3u'(1+u^2)+x^2(u^3-u^2+u)=0.

Divide both parts of the equation by u3u2+uu^3-u^2+u and write the equation in the form:


(u2+1)uu3u2+u=1x.\frac{(u^2+1)u'}{u^3-u^2+u}=-\frac{1}{x}.

Thus we obtain a separable differential equation. Let's solve it:


dx(u2+1)dudxu3u2+u=dxx,\frac{dx(u^2+1)\frac{du}{dx}}{u^3-u^2+u}=-\frac{dx}{x},du(u2+1)u3u2+u=dxx,\frac{du(u^2+1)}{u^3-u^2+u}=-\frac{dx}{x},u2+1u3u2+udu=1xdx,\int\frac{u^2+1}{u^3-u^2+u}du=\int-\frac{1}{x}dx,1u2u+1du+1udu=1xdx,\int\frac{1}{u^2-u+1}du+\int\frac{1}{u}du=\int-\frac{1}{x}dx,2arctan2u133+lnu=lnx+C.\frac{2\arctan{\frac{2u-1}{\sqrt{3}}}}{\sqrt{3}}+\ln{|u|}=-\ln{|x|}+C.

where C is a constant.

Returning to the replacement we obtain the solution of the given equation:


2arctan2y(x)x133+ln(y(x)x)=lnx+C,\frac{2\arctan{\frac{2\frac{y(x)}{x}-1}{\sqrt{3}}}}{\sqrt{3}}+\ln(|\frac{y(x)}{x}|)=-\ln{|x|}+C,

or


23arctan3(2y(x)x1)33+ln(y(x))=C.\frac{2\sqrt{3}\arctan{\frac{\sqrt{3}(2\frac{y(x)}{x}-1)}{3}}}{3}+\ln(|y(x)|)=C.

Answer.

23arctan3(2y(x)x1)33+ln(y(x))=C.\frac{2\sqrt{3}\arctan{\frac{\sqrt{3}(2\frac{y(x)}{x}-1)}{3}}}{3}+\ln(|y(x)|)=C.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment