Solution.
( x 2 + y 2 ) y ′ = y 2 . (x^2+y^2)y'=y^2. ( x 2 + y 2 ) y ′ = y 2 .
Make a replacement
u ( x ) = y ( x ) x , u(x)=\frac{y(x)}{x}, u ( x ) = x y ( x ) , from here y ( x ) = x u ( x ) , y(x)=xu(x), y ( x ) = xu ( x ) , and y ′ = u ( x ) + x u ′ ( x ) . y'=u(x)+xu'(x). y ′ = u ( x ) + x u ′ ( x ) .
Substitute the obtained expressions into the equation:
( x 2 + x 2 u 2 ) ( u + x u ′ ) = x 2 u 2 , (x^2+x^2u^2)(u+xu')=x^2u^2, ( x 2 + x 2 u 2 ) ( u + x u ′ ) = x 2 u 2 ,
x 2 u + x 2 u 3 + x 3 u ′ + x 3 u 2 u ′ − x 2 u 2 = 0 , x^2u+x^2u^3+x^3u'+x^3u^2u'-x^2u^2=0, x 2 u + x 2 u 3 + x 3 u ′ + x 3 u 2 u ′ − x 2 u 2 = 0 ,
x 3 u ′ ( 1 + u 2 ) + x 2 ( u 3 − u 2 + u ) = 0. x^3u'(1+u^2)+x^2(u^3-u^2+u)=0. x 3 u ′ ( 1 + u 2 ) + x 2 ( u 3 − u 2 + u ) = 0.
Divide both parts of the equation by u 3 − u 2 + u u^3-u^2+u u 3 − u 2 + u and write the equation in the form:
( u 2 + 1 ) u ′ u 3 − u 2 + u = − 1 x . \frac{(u^2+1)u'}{u^3-u^2+u}=-\frac{1}{x}. u 3 − u 2 + u ( u 2 + 1 ) u ′ = − x 1 . Thus we obtain a separable differential equation. Let's solve it:
d x ( u 2 + 1 ) d u d x u 3 − u 2 + u = − d x x , \frac{dx(u^2+1)\frac{du}{dx}}{u^3-u^2+u}=-\frac{dx}{x}, u 3 − u 2 + u d x ( u 2 + 1 ) d x d u = − x d x , d u ( u 2 + 1 ) u 3 − u 2 + u = − d x x , \frac{du(u^2+1)}{u^3-u^2+u}=-\frac{dx}{x}, u 3 − u 2 + u d u ( u 2 + 1 ) = − x d x , ∫ u 2 + 1 u 3 − u 2 + u d u = ∫ − 1 x d x , \int\frac{u^2+1}{u^3-u^2+u}du=\int-\frac{1}{x}dx, ∫ u 3 − u 2 + u u 2 + 1 d u = ∫ − x 1 d x , ∫ 1 u 2 − u + 1 d u + ∫ 1 u d u = ∫ − 1 x d x , \int\frac{1}{u^2-u+1}du+\int\frac{1}{u}du=\int-\frac{1}{x}dx, ∫ u 2 − u + 1 1 d u + ∫ u 1 d u = ∫ − x 1 d x , 2 arctan 2 u − 1 3 3 + ln ∣ u ∣ = − ln ∣ x ∣ + C . \frac{2\arctan{\frac{2u-1}{\sqrt{3}}}}{\sqrt{3}}+\ln{|u|}=-\ln{|x|}+C. 3 2 arctan 3 2 u − 1 + ln ∣ u ∣ = − ln ∣ x ∣ + C . where C is a constant.
Returning to the replacement we obtain the solution of the given equation:
2 arctan 2 y ( x ) x − 1 3 3 + ln ( ∣ y ( x ) x ∣ ) = − ln ∣ x ∣ + C , \frac{2\arctan{\frac{2\frac{y(x)}{x}-1}{\sqrt{3}}}}{\sqrt{3}}+\ln(|\frac{y(x)}{x}|)=-\ln{|x|}+C, 3 2 arctan 3 2 x y ( x ) − 1 + ln ( ∣ x y ( x ) ∣ ) = − ln ∣ x ∣ + C , or
2 3 arctan 3 ( 2 y ( x ) x − 1 ) 3 3 + ln ( ∣ y ( x ) ∣ ) = C . \frac{2\sqrt{3}\arctan{\frac{\sqrt{3}(2\frac{y(x)}{x}-1)}{3}}}{3}+\ln(|y(x)|)=C. 3 2 3 arctan 3 3 ( 2 x y ( x ) − 1 ) + ln ( ∣ y ( x ) ∣ ) = C . Answer.
2 3 arctan 3 ( 2 y ( x ) x − 1 ) 3 3 + ln ( ∣ y ( x ) ∣ ) = C . \frac{2\sqrt{3}\arctan{\frac{\sqrt{3}(2\frac{y(x)}{x}-1)}{3}}}{3}+\ln(|y(x)|)=C. 3 2 3 arctan 3 3 ( 2 x y ( x ) − 1 ) + ln ( ∣ y ( x ) ∣ ) = C .
Comments