Solution.
(x2+y2)y′=y2.
Make a replacement
u(x)=xy(x), from here y(x)=xu(x), and y′=u(x)+xu′(x).
Substitute the obtained expressions into the equation:
(x2+x2u2)(u+xu′)=x2u2,
x2u+x2u3+x3u′+x3u2u′−x2u2=0,
x3u′(1+u2)+x2(u3−u2+u)=0.
Divide both parts of the equation by u3−u2+u and write the equation in the form:
u3−u2+u(u2+1)u′=−x1.Thus we obtain a separable differential equation. Let's solve it:
u3−u2+udx(u2+1)dxdu=−xdx,u3−u2+udu(u2+1)=−xdx,∫u3−u2+uu2+1du=∫−x1dx,∫u2−u+11du+∫u1du=∫−x1dx,32arctan32u−1+ln∣u∣=−ln∣x∣+C. where C is a constant.
Returning to the replacement we obtain the solution of the given equation:
32arctan32xy(x)−1+ln(∣xy(x)∣)=−ln∣x∣+C,or
323arctan33(2xy(x)−1)+ln(∣y(x)∣)=C.Answer.
323arctan33(2xy(x)−1)+ln(∣y(x)∣)=C.
Comments
Leave a comment