y′′−3y′+2y=3ex−10cos(x)
1)y′′−3y′+2y=0
k2−3k+2=0
D=9−8=1
k1=23−1=1
k2=23+1=2
Y=C1ex+C2e2x
2) y∗=(Ax+B)⋅ex+C⋅cos(x)+D⋅sin(x)
(y∗)′=A⋅ex+(Ax+B)⋅ex−C⋅sin(x)+D⋅cos(x)=
=(Ax+A+B)⋅ex−C⋅sin(x)+D⋅cos(x)
(y∗)′′=(Ax+2A+B)⋅ex−Ccos(x)−D⋅sin(x).Then:
(Ax+2A+B)⋅ex−Ccos(x)−D⋅sin(x)−3(Ax+A+B)⋅ex+3C⋅sin(x)−3D⋅cos(x)+2(Ax+B)⋅ex+2C⋅cos(x)+2D⋅sin(x)=3ex−10cos(x)
(Ax+2A+B−3Ax−3A−3B+2Ax+2B)ex+cos(x)(−C−3D+2C)+sin(x)(−D+3C+2D)=3ex−10cos(x)
A=−3,B=const
C−3D=−10,3C+D=0 then D=3,C=−1;
y∗=(B−3x)ex−cos(x)+3sin(x)
y=Y+y∗=C1ex+C2e2x+(B−3x)ex−cos(x)+3sin(x)=
=ex(C∗−3x)+C2e2x−cos(x)+3sin(x),C∗−const
Comments