SolutionLet the given differential equation be
F(D,D′)=f(x,y)
Factorize F(D,D′)=f(x,y) into linear factors. Then use the following results.
Rule I. Corresponding to each non-repeated factor (bD+aD′+c) , the part of C.F. is taken as
e(bcx)ϕ(by+ax),ifb=0We now have three particular cases of Rule I:
Rule IA. Take c=0 in Rule I. Hence corresponding to each linear factor (bD+aD′) , the part of C.F. is
Rule IB. Take a=0 in Rule I. Hence corresponding to each linear factor (bD+c) , the part of C.F. is
e(bcx)ϕ(by),if b=0
Rule IC. Take a=c=0 and b=1 in Rule I. Hence corresponding to each linear factor (1 ⋅D) , the part of C.F. is
ϕ(y) In our case,
(D2+2DD′+D′2+2D+2D′+1)z=x⟹z(x,y)=C.F+P.I0 STEP: We factor the expression.
D2+2DD′+D′2+2D+2D′+1=(D2+2DD′+D′2)+(2D+2D′)+1=(D+D′)2+2 ⋅ (D+D′)+1=(D+D′)(D+D′+2)+1
∴(D2+2DD′+D′2+2D+2D′+1)z=((D+D′)(D+D′+2)+1)z
1 STEP: Let's find C.F.
C.F=(C.F.)1+(C.F.)2+(C.F.)3⎩⎨⎧(D+D′)z(bD+aD′+c)z−⎩⎨⎧b=1a=1c=0⟹(C.F.)1=e(10⋅x)⋅ ϕ(1⋅y+1⋅x)
(C.F.)1=ϕ(y+x), where ϕ1 is an arbitrary function
⎩⎨⎧(D+D′+2)z(bD+aD′+c)z−⎩⎨⎧b=1a=1c=2⟹(C.F.)2=e(12⋅x)⋅ ϕ(1⋅y+1⋅x)(C.F.)2=e2x⋅ϕ2(y+x), where ϕ2 is an arbitrary function
⎩⎨⎧(1)z(bD+aD′+c)z−⎩⎨⎧b=0a=0c=1⟹(C.F.)3=e(11⋅x)⋅ ϕ(0⋅y+0⋅x)(C.F.)3=ex, where ϕ3 is an arbitrary function
Then
C.F=(C.F.)1+(C.F.)2+(C.F.)3C.F=ϕ1(y+x)+e2xϕ2(y+x)+ex
2 STEP: Let's find P.I.
P.I.=D2+2DD′+D′2+2D+2D′+11⋅x=D2+2DD′+D′2+2D+2D′+11⋅1⋅x=(1⋅i)2+2⋅(1⋅i)⋅(2⋅i)+(2⋅i)2+(2⋅i)2+2D+2D′+11⋅1⋅x=i2+2⋅2i2+4i2+2D+2D′+11⋅x=9i2+2D+2D′+11⋅x=−9+2D+2D′+11⋅x=2D+2D′−81⋅x=(2D+2D′)−81⋅x=((2D+2D′)−8)⋅((2D+2D′)+8)1⋅(2D+2D)+8⋅x=(2D+2D′)2−648+(2D+2D′)⋅x=4D2+8DD′+4D′2−648+(2D+2D′)⋅x=4⋅(1⋅i)2+8(1⋅i)⋅(2⋅i)+4(2⋅i)2−648+(2D+2D′)⋅x=4i2+16i2+16i2−648+(2D+2D′)⋅x=36i2−648+(2D+2D′)⋅x=−36−648+(2D+2D′)⋅x=−1008+(2D+2D′)⋅x=−1001(8+(2D+2D))⋅x=−1001(8+(2⋅δxδ+2⋅δyδ))⋅x⟹−1001(2⋅δxδ⋅x+2⋅δyδ⋅x)+8⋅x)=−1001(2+8x)=100−2−8x=100−2(1+4x)=50−(1+4x)=504x−501
General Solution,
{z(x,y)=C.F.+P.I.=ϕ1(y+x)+e2xϕ2(y+x)+ex+504x−501
Where ϕ1, ϕ2, and ϕ3 are arbitrary functions
Comments