Question #142181
Solve
(D^2+2DD'+D'2+2D+2D'+1)z=x
1
Expert's answer
2020-11-04T15:58:08-0500
SolutionSolution

Let the given differential equation be


F(D,D)=f(x,y)F(D, D')= f(x,y)

Factorize F(D,D)=f(x,y)F(D,D')=f(x,y) into linear factors. Then use the following results.


Rule I. Corresponding to each non-repeated factor (bD+aD+c)(bD+aD'+c) , the part of C.F. is taken as


e(cxb)ϕ(by+ax),ifb0e(\frac{cx}{b})\phi(by+ax), if b \ne 0

We now have three particular cases of Rule I:

Rule IA. Take c=0c=0 in Rule I. Hence corresponding to each linear factor (bD+aD)(bD+aD') , the part of C.F. is

Rule IB. Take a=0a=0 in Rule I. Hence corresponding to each linear factor (bD+c)(bD+c) , the part of C.F. is


e(cxb)ϕ(by),if b0e(\frac{cx}{b})\phi(by), if\ b \ne 0

Rule IC. Take a=c=0 and b=1a=c=0\ and\ b=1 in Rule I. Hence corresponding to each linear factor (1 D)(1\ \cdot D) , the part of C.F. is


ϕ(y)\phi (y)

In our case,


(D2+2DD+D2+2D+2D+1)z=x    z(x,y)=C.F+P.I(D^2+2DD'+D'^2+2D+2D'+1)z=x \implies z(x,y)=C.F+P.I

0 STEP: We factor the expression.

D2+2DD+D2+2D+2D+1=(D2+2DD+D2)+(2D+2D)+1=(D+D)2+2  (D+D)+1=(D+D)(D+D+2)+1D^2+2DD'+D'^2+2D+2D'+1=(D^2+2DD'+D'^2)+(2D+2D')+1=(D+D')^2+2\ \cdot\ (D+D')+1=(D+D')(D+D'+2)+1


(D2+2DD+D2+2D+2D+1)z=((D+D)(D+D+2)+1)z\therefore (D^2+2DD'+D'^2+2D+2D'+1)z=((D+D')(D+D'+2)+1)z


1 STEP: Let's find C.F.

C.F=(C.F.)1+(C.F.)2+(C.F.)3{(D+D)z(bD+aD+c)z{b=1a=1    (C.F.)1=e(0x1) ϕ(1y+1x)c=0C.F=(C.F.)_1+(C.F.)_2+(C.F.)_3\\ \begin{cases} (D+D')z \\ (bD+aD'+c)z & -\begin{cases} b=1 \\a=1& \implies (C.F.)_1 = e(\frac{0 \cdot x}{1}) \cdot\ \phi(1\cdot y+1\cdot x)\\ c=0 \end{cases}\\ \end{cases}\\

(C.F.)1=ϕ(y+x)(C.F.)_1 = \phi(y+x), where ϕ1\phi_1 is an arbitrary function



{(D+D+2)z(bD+aD+c)z{b=1a=1    (C.F.)2=e(2x1) ϕ(1y+1x)c=2\begin{cases} (D+D'+2)z \\ (bD+aD'+c)z & -\begin{cases} b=1 \\a=1& \implies (C.F.)_2 = e(\frac{2 \cdot x}{1}) \cdot\ \phi(1\cdot y+1\cdot x)\\ c=2 \end{cases}\\ \end{cases}\\(C.F.)2=e2xϕ2(y+x)(C.F.)_2 = e^{2x}\cdot\phi_2(y+x), where ϕ2\phi_2 is an arbitrary function


{(1)z(bD+aD+c)z{b=0a=0    (C.F.)3=e(1x1) ϕ(0y+0x)c=1\begin{cases} (1)z \\ (bD+aD'+c)z & -\begin{cases} b=0 \\a=0& \implies (C.F.)_3 = e(\frac{1 \cdot x}{1}) \cdot\ \phi(0\cdot y+0\cdot x)\\ c=1 \end{cases}\\ \end{cases}\\(C.F.)3=ex(C.F.)_3 = e^x, where ϕ3\phi_3 is an arbitrary function


Then

C.F=(C.F.)1+(C.F.)2+(C.F.)3C.F=ϕ1(y+x)+e2xϕ2(y+x)+exC.F=(C.F.)_1+(C.F.)_2+(C.F.)_3\\ C.F=\phi_1(y+x)+e^{2x}\phi_2(y+x)+e^x\\

2 STEP: Let's find P.I.

P.I.=1D2+2DD+D2+2D+2D+1x=1D2+2DD+D2+2D+2D+11x=1(1i)2+2(1i)(2i)+(2i)2+(2i)2+2D+2D+11x=1i2+22i2+4i2+2D+2D+1x=19i2+2D+2D+1x=19+2D+2D+1x=12D+2D8x=1(2D+2D)8x=1(2D+2D)+8((2D+2D)8)((2D+2D)+8)x=8+(2D+2D)(2D+2D)264x=8+(2D+2D)4D2+8DD+4D264x=8+(2D+2D)4(1i)2+8(1i)(2i)+4(2i)264x=8+(2D+2D)4i2+16i2+16i264x=8+(2D+2D)36i264x=8+(2D+2D)3664x=8+(2D+2D)100x=1100(8+(2D+2D))x=1100(8+(2δδx+2δδy))x    1100(2δδxx+2δδyx)+8x)=1100(2+8x)=28x100=2(1+4x)100=(1+4x)50=450x150P.I. = \frac{1}{D^2+2DD'+D'^2+2D+2D'+1} \cdot x =\frac{1}{D^2+2DD'+D'^2+2D+2D'+1}\cdot 1\cdot x= \frac{1}{(1 \cdot i)^2+2 \cdot(1 \cdot i)\cdot (2 \cdot i)+ (2 \cdot i)^2+ (2 \cdot i)^2+2D+2D'+1}\cdot 1\cdot x=\frac{1}{i^2+2 \cdot2 i^2+ 4 i^2+2D+2D'+1}\cdot x= \frac{1}{9i^2+2D+2D'+1} \cdot x =\frac{1}{-9+2D+2D'+1} \cdot x =\frac{1}{2D+2D'-8} \cdot x =\frac{1}{(2D+2D')-8} \cdot x =\frac{1\cdot (2D+2D)+8}{((2D+2D')-8)\cdot ((2D+2D')+8)} \cdot x =\frac{8+(2D+2D')}{(2D+2D')^2-64}\cdot x=\frac{8+(2D+2D')}{4D^2+8DD'+4D'^2-64}\cdot x=\frac{8+(2D+2D')}{4\cdot(1 \cdot i)^2+8(1 \cdot i)\cdot (2 \cdot i)+4(2 \cdot i)^2-64}\cdot x=\frac{8+(2D+2D')}{4 i^2+16 i^2+16 i^2-64}\cdot x=\frac{8+(2D+2D')}{36 i^2-64}\cdot x=\frac{8+(2D+2D')}{-36-64}\cdot x=\frac{8+(2D+2D')}{-100}\cdot x\\=-\frac{1}{100}(8+(2D+2D))\cdot x=-\frac{1}{100}(8+(2\cdot\frac{\delta}{\delta x}+2\cdot\frac{\delta}{\delta y}))\cdot x\\ \implies -\frac{1}{100}(2\cdot\frac{\delta}{\delta x}\cdot x+2\cdot\frac{\delta}{\delta y}\cdot x)+8 \cdot x)=-\frac{1}{100}(2+8x)=\frac{-2-8x}{100}=\frac{-2(1+4x)}{100}=\frac{-(1+4x)}{50}=\frac{4}{50}x-\frac{1}{50}


General Solution,

{z(x,y)=C.F.+P.I.=ϕ1(y+x)+e2xϕ2(y+x)+ex+450x150\begin{cases} z(x,y)=C.F.+P.I.=\phi_1(y+x)+e^{2x}\phi_2(y+x)+e^x+\frac{4}{50}x-\frac{1}{50} \end{cases}

Where ϕ1, ϕ2, and ϕ3\phi_1,\ \phi_2,\ and\ \phi_3 are arbitrary functions



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS