S o l u t i o n Solution S o l u t i o n Let the given differential equation be
F ( D , D ′ ) = f ( x , y ) F(D, D')= f(x,y) F ( D , D ′ ) = f ( x , y )
Factorize F ( D , D ′ ) = f ( x , y ) F(D,D')=f(x,y) F ( D , D ′ ) = f ( x , y ) into linear factors. Then use the following results.
Rule I. Corresponding to each non-repeated factor ( b D + a D ′ + c ) (bD+aD'+c) ( b D + a D ′ + c ) , the part of C.F. is taken as
e ( c x b ) ϕ ( b y + a x ) , i f b ≠ 0 e(\frac{cx}{b})\phi(by+ax), if b \ne 0 e ( b c x ) ϕ ( b y + a x ) , i f b = 0 We now have three particular cases of Rule I:
Rule IA . Take c = 0 c=0 c = 0 in Rule I. Hence corresponding to each linear factor ( b D + a D ′ ) (bD+aD') ( b D + a D ′ ) , the part of C.F. is
Rule IB. Take a = 0 a=0 a = 0 in Rule I. Hence corresponding to each linear factor ( b D + c ) (bD+c) ( b D + c ) , the part of C.F. is
e ( c x b ) ϕ ( b y ) , i f b ≠ 0 e(\frac{cx}{b})\phi(by), if\ b \ne 0 e ( b c x ) ϕ ( b y ) , i f b = 0
Rule IC . Take a = c = 0 a n d b = 1 a=c=0\ and\ b=1 a = c = 0 an d b = 1 in Rule I. Hence corresponding to each linear factor ( 1 ⋅ D ) (1\ \cdot D) ( 1 ⋅ D ) , the part of C.F. is
ϕ ( y ) \phi (y) ϕ ( y ) In our case,
( D 2 + 2 D D ′ + D ′ 2 + 2 D + 2 D ′ + 1 ) z = x ⟹ z ( x , y ) = C . F + P . I (D^2+2DD'+D'^2+2D+2D'+1)z=x \implies z(x,y)=C.F+P.I ( D 2 + 2 D D ′ + D ′2 + 2 D + 2 D ′ + 1 ) z = x ⟹ z ( x , y ) = C . F + P . I 0 STEP: We factor the expression.
D 2 + 2 D D ′ + D ′ 2 + 2 D + 2 D ′ + 1 = ( D 2 + 2 D D ′ + D ′ 2 ) + ( 2 D + 2 D ′ ) + 1 = ( D + D ′ ) 2 + 2 ⋅ ( D + D ′ ) + 1 = ( D + D ′ ) ( D + D ′ + 2 ) + 1 D^2+2DD'+D'^2+2D+2D'+1=(D^2+2DD'+D'^2)+(2D+2D')+1=(D+D')^2+2\ \cdot\ (D+D')+1=(D+D')(D+D'+2)+1 D 2 + 2 D D ′ + D ′2 + 2 D + 2 D ′ + 1 = ( D 2 + 2 D D ′ + D ′2 ) + ( 2 D + 2 D ′ ) + 1 = ( D + D ′ ) 2 + 2 ⋅ ( D + D ′ ) + 1 = ( D + D ′ ) ( D + D ′ + 2 ) + 1
∴ ( D 2 + 2 D D ′ + D ′ 2 + 2 D + 2 D ′ + 1 ) z = ( ( D + D ′ ) ( D + D ′ + 2 ) + 1 ) z \therefore (D^2+2DD'+D'^2+2D+2D'+1)z=((D+D')(D+D'+2)+1)z ∴ ( D 2 + 2 D D ′ + D ′2 + 2 D + 2 D ′ + 1 ) z = (( D + D ′ ) ( D + D ′ + 2 ) + 1 ) z
1 STEP: Let's find C.F.
C . F = ( C . F . ) 1 + ( C . F . ) 2 + ( C . F . ) 3 { ( D + D ′ ) z ( b D + a D ′ + c ) z − { b = 1 a = 1 ⟹ ( C . F . ) 1 = e ( 0 ⋅ x 1 ) ⋅ ϕ ( 1 ⋅ y + 1 ⋅ x ) c = 0 C.F=(C.F.)_1+(C.F.)_2+(C.F.)_3\\
\begin{cases}
(D+D')z \\
(bD+aD'+c)z & -\begin{cases} b=1 \\a=1& \implies (C.F.)_1 = e(\frac{0 \cdot x}{1}) \cdot\ \phi(1\cdot y+1\cdot x)\\ c=0 \end{cases}\\
\end{cases}\\ C . F = ( C . F . ) 1 + ( C . F . ) 2 + ( C . F . ) 3 ⎩ ⎨ ⎧ ( D + D ′ ) z ( b D + a D ′ + c ) z − ⎩ ⎨ ⎧ b = 1 a = 1 c = 0 ⟹ ( C . F . ) 1 = e ( 1 0 ⋅ x ) ⋅ ϕ ( 1 ⋅ y + 1 ⋅ x )
( C . F . ) 1 = ϕ ( y + x ) (C.F.)_1 = \phi(y+x) ( C . F . ) 1 = ϕ ( y + x ) , where ϕ 1 \phi_1 ϕ 1 is an arbitrary function
{ ( D + D ′ + 2 ) z ( b D + a D ′ + c ) z − { b = 1 a = 1 ⟹ ( C . F . ) 2 = e ( 2 ⋅ x 1 ) ⋅ ϕ ( 1 ⋅ y + 1 ⋅ x ) c = 2 \begin{cases}
(D+D'+2)z \\
(bD+aD'+c)z & -\begin{cases} b=1 \\a=1& \implies (C.F.)_2 = e(\frac{2 \cdot x}{1}) \cdot\ \phi(1\cdot y+1\cdot x)\\ c=2 \end{cases}\\
\end{cases}\\ ⎩ ⎨ ⎧ ( D + D ′ + 2 ) z ( b D + a D ′ + c ) z − ⎩ ⎨ ⎧ b = 1 a = 1 c = 2 ⟹ ( C . F . ) 2 = e ( 1 2 ⋅ x ) ⋅ ϕ ( 1 ⋅ y + 1 ⋅ x ) ( C . F . ) 2 = e 2 x ⋅ ϕ 2 ( y + x ) (C.F.)_2 = e^{2x}\cdot\phi_2(y+x) ( C . F . ) 2 = e 2 x ⋅ ϕ 2 ( y + x ) , where ϕ 2 \phi_2 ϕ 2 is an arbitrary function
{ ( 1 ) z ( b D + a D ′ + c ) z − { b = 0 a = 0 ⟹ ( C . F . ) 3 = e ( 1 ⋅ x 1 ) ⋅ ϕ ( 0 ⋅ y + 0 ⋅ x ) c = 1 \begin{cases}
(1)z \\
(bD+aD'+c)z & -\begin{cases} b=0 \\a=0& \implies (C.F.)_3 = e(\frac{1 \cdot x}{1}) \cdot\ \phi(0\cdot y+0\cdot x)\\ c=1 \end{cases}\\
\end{cases}\\ ⎩ ⎨ ⎧ ( 1 ) z ( b D + a D ′ + c ) z − ⎩ ⎨ ⎧ b = 0 a = 0 c = 1 ⟹ ( C . F . ) 3 = e ( 1 1 ⋅ x ) ⋅ ϕ ( 0 ⋅ y + 0 ⋅ x ) ( C . F . ) 3 = e x (C.F.)_3 = e^x ( C . F . ) 3 = e x , where ϕ 3 \phi_3 ϕ 3 is an arbitrary function
Then
C . F = ( C . F . ) 1 + ( C . F . ) 2 + ( C . F . ) 3 C . F = ϕ 1 ( y + x ) + e 2 x ϕ 2 ( y + x ) + e x C.F=(C.F.)_1+(C.F.)_2+(C.F.)_3\\
C.F=\phi_1(y+x)+e^{2x}\phi_2(y+x)+e^x\\ C . F = ( C . F . ) 1 + ( C . F . ) 2 + ( C . F . ) 3 C . F = ϕ 1 ( y + x ) + e 2 x ϕ 2 ( y + x ) + e x
2 STEP: Let's find P.I.
P . I . = 1 D 2 + 2 D D ′ + D ′ 2 + 2 D + 2 D ′ + 1 ⋅ x = 1 D 2 + 2 D D ′ + D ′ 2 + 2 D + 2 D ′ + 1 ⋅ 1 ⋅ x = 1 ( 1 ⋅ i ) 2 + 2 ⋅ ( 1 ⋅ i ) ⋅ ( 2 ⋅ i ) + ( 2 ⋅ i ) 2 + ( 2 ⋅ i ) 2 + 2 D + 2 D ′ + 1 ⋅ 1 ⋅ x = 1 i 2 + 2 ⋅ 2 i 2 + 4 i 2 + 2 D + 2 D ′ + 1 ⋅ x = 1 9 i 2 + 2 D + 2 D ′ + 1 ⋅ x = 1 − 9 + 2 D + 2 D ′ + 1 ⋅ x = 1 2 D + 2 D ′ − 8 ⋅ x = 1 ( 2 D + 2 D ′ ) − 8 ⋅ x = 1 ⋅ ( 2 D + 2 D ) + 8 ( ( 2 D + 2 D ′ ) − 8 ) ⋅ ( ( 2 D + 2 D ′ ) + 8 ) ⋅ x = 8 + ( 2 D + 2 D ′ ) ( 2 D + 2 D ′ ) 2 − 64 ⋅ x = 8 + ( 2 D + 2 D ′ ) 4 D 2 + 8 D D ′ + 4 D ′ 2 − 64 ⋅ x = 8 + ( 2 D + 2 D ′ ) 4 ⋅ ( 1 ⋅ i ) 2 + 8 ( 1 ⋅ i ) ⋅ ( 2 ⋅ i ) + 4 ( 2 ⋅ i ) 2 − 64 ⋅ x = 8 + ( 2 D + 2 D ′ ) 4 i 2 + 16 i 2 + 16 i 2 − 64 ⋅ x = 8 + ( 2 D + 2 D ′ ) 36 i 2 − 64 ⋅ x = 8 + ( 2 D + 2 D ′ ) − 36 − 64 ⋅ x = 8 + ( 2 D + 2 D ′ ) − 100 ⋅ x = − 1 100 ( 8 + ( 2 D + 2 D ) ) ⋅ x = − 1 100 ( 8 + ( 2 ⋅ δ δ x + 2 ⋅ δ δ y ) ) ⋅ x ⟹ − 1 100 ( 2 ⋅ δ δ x ⋅ x + 2 ⋅ δ δ y ⋅ x ) + 8 ⋅ x ) = − 1 100 ( 2 + 8 x ) = − 2 − 8 x 100 = − 2 ( 1 + 4 x ) 100 = − ( 1 + 4 x ) 50 = 4 50 x − 1 50 P.I. = \frac{1}{D^2+2DD'+D'^2+2D+2D'+1} \cdot x =\frac{1}{D^2+2DD'+D'^2+2D+2D'+1}\cdot 1\cdot x= \frac{1}{(1 \cdot i)^2+2 \cdot(1 \cdot i)\cdot (2 \cdot i)+ (2 \cdot i)^2+ (2 \cdot i)^2+2D+2D'+1}\cdot 1\cdot x=\frac{1}{i^2+2 \cdot2 i^2+ 4 i^2+2D+2D'+1}\cdot x= \frac{1}{9i^2+2D+2D'+1} \cdot x =\frac{1}{-9+2D+2D'+1} \cdot x =\frac{1}{2D+2D'-8} \cdot x =\frac{1}{(2D+2D')-8} \cdot x =\frac{1\cdot (2D+2D)+8}{((2D+2D')-8)\cdot ((2D+2D')+8)} \cdot x =\frac{8+(2D+2D')}{(2D+2D')^2-64}\cdot x=\frac{8+(2D+2D')}{4D^2+8DD'+4D'^2-64}\cdot x=\frac{8+(2D+2D')}{4\cdot(1 \cdot i)^2+8(1 \cdot i)\cdot (2 \cdot i)+4(2 \cdot i)^2-64}\cdot x=\frac{8+(2D+2D')}{4 i^2+16 i^2+16 i^2-64}\cdot x=\frac{8+(2D+2D')}{36 i^2-64}\cdot x=\frac{8+(2D+2D')}{-36-64}\cdot x=\frac{8+(2D+2D')}{-100}\cdot x\\=-\frac{1}{100}(8+(2D+2D))\cdot x=-\frac{1}{100}(8+(2\cdot\frac{\delta}{\delta x}+2\cdot\frac{\delta}{\delta y}))\cdot x\\
\implies -\frac{1}{100}(2\cdot\frac{\delta}{\delta x}\cdot x+2\cdot\frac{\delta}{\delta y}\cdot x)+8 \cdot x)=-\frac{1}{100}(2+8x)=\frac{-2-8x}{100}=\frac{-2(1+4x)}{100}=\frac{-(1+4x)}{50}=\frac{4}{50}x-\frac{1}{50} P . I . = D 2 + 2 D D ′ + D ′2 + 2 D + 2 D ′ + 1 1 ⋅ x = D 2 + 2 D D ′ + D ′2 + 2 D + 2 D ′ + 1 1 ⋅ 1 ⋅ x = ( 1 ⋅ i ) 2 + 2 ⋅ ( 1 ⋅ i ) ⋅ ( 2 ⋅ i ) + ( 2 ⋅ i ) 2 + ( 2 ⋅ i ) 2 + 2 D + 2 D ′ + 1 1 ⋅ 1 ⋅ x = i 2 + 2 ⋅ 2 i 2 + 4 i 2 + 2 D + 2 D ′ + 1 1 ⋅ x = 9 i 2 + 2 D + 2 D ′ + 1 1 ⋅ x = − 9 + 2 D + 2 D ′ + 1 1 ⋅ x = 2 D + 2 D ′ − 8 1 ⋅ x = ( 2 D + 2 D ′ ) − 8 1 ⋅ x = (( 2 D + 2 D ′ ) − 8 ) ⋅ (( 2 D + 2 D ′ ) + 8 ) 1 ⋅ ( 2 D + 2 D ) + 8 ⋅ x = ( 2 D + 2 D ′ ) 2 − 64 8 + ( 2 D + 2 D ′ ) ⋅ x = 4 D 2 + 8 D D ′ + 4 D ′2 − 64 8 + ( 2 D + 2 D ′ ) ⋅ x = 4 ⋅ ( 1 ⋅ i ) 2 + 8 ( 1 ⋅ i ) ⋅ ( 2 ⋅ i ) + 4 ( 2 ⋅ i ) 2 − 64 8 + ( 2 D + 2 D ′ ) ⋅ x = 4 i 2 + 16 i 2 + 16 i 2 − 64 8 + ( 2 D + 2 D ′ ) ⋅ x = 36 i 2 − 64 8 + ( 2 D + 2 D ′ ) ⋅ x = − 36 − 64 8 + ( 2 D + 2 D ′ ) ⋅ x = − 100 8 + ( 2 D + 2 D ′ ) ⋅ x = − 100 1 ( 8 + ( 2 D + 2 D )) ⋅ x = − 100 1 ( 8 + ( 2 ⋅ δ x δ + 2 ⋅ δy δ )) ⋅ x ⟹ − 100 1 ( 2 ⋅ δ x δ ⋅ x + 2 ⋅ δy δ ⋅ x ) + 8 ⋅ x ) = − 100 1 ( 2 + 8 x ) = 100 − 2 − 8 x = 100 − 2 ( 1 + 4 x ) = 50 − ( 1 + 4 x ) = 50 4 x − 50 1
General Solution,
{ z ( x , y ) = C . F . + P . I . = ϕ 1 ( y + x ) + e 2 x ϕ 2 ( y + x ) + e x + 4 50 x − 1 50 \begin{cases}
z(x,y)=C.F.+P.I.=\phi_1(y+x)+e^{2x}\phi_2(y+x)+e^x+\frac{4}{50}x-\frac{1}{50}
\end{cases} { z ( x , y ) = C . F . + P . I . = ϕ 1 ( y + x ) + e 2 x ϕ 2 ( y + x ) + e x + 50 4 x − 50 1
Where ϕ 1 , ϕ 2 , a n d ϕ 3 \phi_1,\ \phi_2,\ and\ \phi_3 ϕ 1 , ϕ 2 , an d ϕ 3 are arbitrary functions
Comments