Question #141784
Solve -dx/x(x+y) = dy/y(x+y) = dz/(x-y)(2x+2y+z)
1
Expert's answer
2020-11-02T20:40:26-0500

We have dxx(x+y)=dyy(x+y)=dz(xy)(2x+2y+z)\frac{dx}{-x(x+y)} = \frac{dy}{y(x+y)} = \frac{dz}{(x-y)(2x+2y+z)} ______________(1)

Now from first two part of equation (1),

dxx(x+y)=dyy(x+y)\frac{dx}{-x(x+y)} = \frac{dy}{y(x+y)}

    dxx=dyy\implies \frac{dx}{-x} = \frac{dy}{y}

Now by integration, we get ln(x)=ln(y)ln(c1)    c1=xy-\ln(x) = \ln(y) - \ln(c_1) \implies c_1 = xy ________(2)

Now also dxx(x+y)=dyy(x+y)=dz(xy)(2x+2y+z)=2dx+2dy+dz(xy)z\frac{dx}{-x(x+y)} = \frac{dy}{y(x+y)} = \frac{dz}{(x-y)(2x+2y+z)} = \frac{2dx+2dy+dz}{(x-y)z}

    dz(xy)(2x+2y+z)=2dx+2dy+dz(xy)z\implies \frac{dz}{(x-y)(2x+2y+z)} = \frac{2dx+2dy+dz}{(x-y)z}

    dz2x+2y+z=2dx+2dy+dzz\implies \frac{dz}{2x+2y+z} = \frac{2dx+2dy+dz}{z}

    zdz=(2x+2y+z)(2dx+2dy+dz)\implies zdz = (2x+2y+z) (2dx+2dy+dz)

Hence by integration, we get

z22=(2x+y+z)22+c22\frac{z^2}{2} = \frac{(2x+y+z)^2}{2} + \frac{c_2}{2}

    c2=z2(2x+y+z)2\implies c_2 = z^2- (2x+y+z)^2 ______________(3)

Hence, solution is :

c2=f(c1)c_2 = f(c_1)

    z2(2x+y+z)2=f(xy)\implies z^2- (2x+y+z)^2 = f(xy) .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS