ydx+(1−3y)xy=3ydyydx+(1−3y)xy=3ydyydx+(1−3y)xy=3ydy
A first order linear differential equation in the form of y′(x)+p(x)y=q(x)y'(x)+p(x)y=q(x)y′(x)+p(x)y=q(x)
y+(1−3y)xy=3ydydxy+(1-3y)xy=3y\frac{dy}{dx}y+(1−3y)xy=3ydxdy
Substitute dydx=y′\frac{dy}{dx}=y'dxdy=y′
y+(1−3y)xy=3yy′y+(1-3y)xy=3yy'y+(1−3y)xy=3yy′
Rewrite,
y′+xy=13+x3y'+xy=\frac{1}{3}+\frac{x}{3}y′+xy=31+3x
Integration Factor : IF=ex22IF = e^{\frac{x^2}{2}}IF=e2x2
Differential Equation: (IF×y)′=IF×q(x)(IF\times y)'= IF\times q(x)(IF×y)′=IF×q(x)
(ex22×y)′=ex22×13+ex22×x3(e^{\frac{x^2}{2}} \times y)'= e^{\frac{x^2}{2}} \times \frac{1}{3} +e^{\frac{x^2}{2}} \times \frac{x}{3}(e2x2×y)′=e2x2×31+e2x2×3x
y=2πerfix26ex22+13+c1ex22y = \frac{\sqrt 2 \sqrt \pi erfi \frac{x}{\sqrt 2}}{6e^{\frac{x^2}{2}}}+\frac{1}{3}+\frac {c_1}{e^{\frac{x^2}{2}}}y=6e2x22πerfi2x+31+e2x2c1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments