Question #141723
ydx+(1−3y)xy=3ydy
1
Expert's answer
2020-11-03T16:39:40-0500

ydx+(13y)xy=3ydyydx+(1−3y)xy=3ydy

A first order linear differential equation in the form of y(x)+p(x)y=q(x)y'(x)+p(x)y=q(x)

y+(13y)xy=3ydydxy+(1-3y)xy=3y\frac{dy}{dx}

Substitute dydx=y\frac{dy}{dx}=y'

y+(13y)xy=3yyy+(1-3y)xy=3yy'

Rewrite,

y+xy=13+x3y'+xy=\frac{1}{3}+\frac{x}{3}

Integration Factor : IF=ex22IF = e^{\frac{x^2}{2}}

Differential Equation: (IF×y)=IF×q(x)(IF\times y)'= IF\times q(x)

(ex22×y)=ex22×13+ex22×x3(e^{\frac{x^2}{2}} \times y)'= e^{\frac{x^2}{2}} \times \frac{1}{3} +e^{\frac{x^2}{2}} \times \frac{x}{3}

y=2πerfix26ex22+13+c1ex22y = \frac{\sqrt 2 \sqrt \pi erfi \frac{x}{\sqrt 2}}{6e^{\frac{x^2}{2}}}+\frac{1}{3}+\frac {c_1}{e^{\frac{x^2}{2}}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS