We have the system of Charpit’s auxiliary equations as
"=\\dfrac{dp}{2px+2qy-2z-2px}=\\dfrac{dq}{2qx-2qx}"
Now "dq=0" or "q=a"
"p(x^2-a)=2x(z-ay)"
"p=\\dfrac{2x(z-ay)}{x^2-a}"
"dz=pdx+qdy"
"dz=\\dfrac{2x(z-ay)}{x^2-a}dx+ady"
"\\dfrac{dz-ady}{z-ay}=\\dfrac{2x}{x^2-a}dx"
Integrate both sides
"z=c(x^2-a)+ay"
Comments
Leave a comment