Question #141655
Solve
px^2+2qxy-pq-2xz=0
1
Expert's answer
2020-11-03T17:01:42-0500
f(x,y,z,p,q)=px2+2qxypq2xz=0f(x, y,z,p,q)=px^2+2qxy-pq-2xz=0

We have the system of Charpit’s auxiliary equations as


dxfp=dyfq=dzpfpqfq=dpfx+pfz=dqfy+qfz\dfrac{dx}{-f_p}=\dfrac{dy}{-f_q}=\dfrac{dz}{-pf_p-qf_q}=\dfrac{dp}{f_x+pf_z}=\dfrac{dq}{f_y+qf_z}


dxqx2=dyp2xy=dzpx2+pq2qxy+pq=\dfrac{dx}{q-x^2}=\dfrac{dy}{p-2xy}=\dfrac{dz}{-px^2+pq-2qxy+pq}=

=dp2px+2qy2z2px=dq2qx2qx=\dfrac{dp}{2px+2qy-2z-2px}=\dfrac{dq}{2qx-2qx}

Now dq=0dq=0 or q=aq=a


px2+2axypa2xz=0px^2+2axy-pa-2xz=0

p(x2a)=2x(zay)p(x^2-a)=2x(z-ay)

p=2x(zay)x2ap=\dfrac{2x(z-ay)}{x^2-a}

dz=pdx+qdydz=pdx+qdy

dz=2x(zay)x2adx+adydz=\dfrac{2x(z-ay)}{x^2-a}dx+ady

dzadyzay=2xx2adx\dfrac{dz-ady}{z-ay}=\dfrac{2x}{x^2-a}dx

Integrate both sides


ln(zay)=ln(x2a)+lnc\ln(|z-ay|)=\ln(|x^2-a|)+\ln c

z=c(x2a)+ayz=c(x^2-a)+ay


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS