f(x,y,z,p,q)=px2+2qxy−pq−2xz=0 We have the system of Charpit’s auxiliary equations as
−fpdx=−fqdy=−pfp−qfqdz=fx+pfzdp=fy+qfzdq
q−x2dx=p−2xydy=−px2+pq−2qxy+pqdz=
=2px+2qy−2z−2pxdp=2qx−2qxdq
Now dq=0 or q=a
px2+2axy−pa−2xz=0
p(x2−a)=2x(z−ay)
p=x2−a2x(z−ay)
dz=pdx+qdy
dz=x2−a2x(z−ay)dx+ady
z−aydz−ady=x2−a2xdx Integrate both sides
ln(∣z−ay∣)=ln(∣x2−a∣)+lnc
z=c(x2−a)+ay
Comments