p−q=log(x+y)The Langrange’s auxiliary equation is1dx=−1dy=log(x+y)dzChoosing(1,1,0)as multipliersdx+dy=0Integrating both sides∫dx+∫dy=C1x+y=C1Comparing the first and the last equation1dx=log(x+y)dz∫dx=∫log(x+y)dz∫dx=∫log(C1)dzx=log(C1)z+C2xlog(C1)=z+C2xlog(C1)−z=C2xlog(x+y)−z=C2,{C1=x+y}Thus, the solution to the partialdifferential equations isϕ(x+y,xlog(x+y)−z)=0
Comments