Question #140690
(y^2-2xy)dx-(2xy-x^2)dy=0
1
Expert's answer
2020-10-27T18:58:11-0400

(y22xy)dx(2xyx2)dy=0({y^2} - 2xy)dx - (2xy - {x^2})dy = 0

dydx(x2+2xy)+y22xy=0- \frac{{dy}}{{dx}}( - {x^2} + 2xy) + {y^2} - 2xy = 0

Let y(x)=xv(x)y(x) = xv(x), which gives dydx=xdvdx+v\frac{{dy}}{{dx}} = x\frac{{dv}}{{dx}} + v :

(x2+2x2v)(xdvdx+v)+x2v22x2v=0- ( - {x^2} + 2{x^2}v)\left( {x\frac{{dv}}{{dx}} + v} \right) + {x^2}{v^2} - 2{x^2}v = 0

Simplify:

x2(xdvdx+v2+v+2xdvdxv)=0- {x^2}\left( { - x\frac{{dv}}{{dx}} + {v^2} + v + 2x\frac{{dv}}{{dx}}v} \right) = 0

Solve for dvdx{\frac{{dv}}{{dx}}}:

dvdx=v2vx(2v1)\frac{{dv}}{{dx}} = \frac{{ - {v^2} - v}}{{x(2v - 1)}}

Divide both sides by v2v2v1:\frac{{ - {v^2} - v}}{{2v - 1}}:

dvdx(2v1)v2v=1x\frac{{\frac{{dv}}{{dx}}(2v - 1)}}{{ - {v^2} - v}} = \frac{1}{x}

Integrate both sides with respect to x:

dvdx(2v1)v2vdx=1xdx\int {\frac{{\frac{{dv}}{{dx}}(2v - 1)}}{{ - {v^2} - v}}} dx = \int {\frac{1}{x}} dx

Evaluate the integrals:

3ln(v+1)+lnv=lnx+C- 3\ln (v + 1) + \ln v = \ln x + C

Substitute back:

3ln(yx+1)+lnyx=lnx+C- 3\ln (\frac{y}{x} + 1) + \ln \frac{y}{x} = \ln x + C



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS