(y2−2xy)dx−(2xy−x2)dy=0
−dxdy(−x2+2xy)+y2−2xy=0
Let y(x)=xv(x), which gives dxdy=xdxdv+v :
−(−x2+2x2v)(xdxdv+v)+x2v2−2x2v=0
Simplify:
−x2(−xdxdv+v2+v+2xdxdvv)=0
Solve for dxdv:
dxdv=x(2v−1)−v2−v
Divide both sides by 2v−1−v2−v:
−v2−vdxdv(2v−1)=x1
Integrate both sides with respect to x:
∫−v2−vdxdv(2v−1)dx=∫x1dx
Evaluate the integrals:
−3ln(v+1)+lnv=lnx+C
Substitute back:
−3ln(xy+1)+lnxy=lnx+C
Comments