Given differential equation is
(1−x2)(∂2z/∂x2)−2xy[∂2z/(∂x.∂y)]+(1−y2)(∂2z/∂y2)+2(∂z/∂x)+3y(∂z/∂y)=0 .
Compare it with
A(∂2z/∂x2)+B[∂2z/(∂x.∂y)]+C(∂2z/∂y2)+D(∂z/∂x)+E(∂z/∂y)=0 , we have
A=1−x2,B=−2xy,C=1−y2 .
Now, B2−4AC=4x2y2−4(1−x2)(1−y2)=4(x2+y2−1)
For (x,y) outside the circle x2+y2=1 , we have x2+y2>1 .
⟹B2−4AC>0 .
Hence, the given differential equation is Hyperbolic equation.
Thus, given statement is false.
Comments