Question #140578
Show that if n>r>0, the complementary function represents vibrations which are ultimately damped out. Further, prove that the particular integral is of the form bcos(pt-α), where b^2= a^2/[(n^2-p^2)^2 +4r^2p^2].
1
Expert's answer
2020-10-27T16:58:09-0400

d2xdt2+2r(dxdt)+n2x=acos(pt)Letx=f(t)f"(t)+2rf(t)+n2f(t)=acos(pt)The complementary function is derivedwhenf"(t)+2rf(t)+n2f(t)=0The auxiliary equation ism2+2rm+n2=0m=2r±4r24n22=r±r2n2Sincen>rm=r±jn2r2Recall that if the auxiliary equation ism=α±jβ,the general solution can bewritten asy=eαt(Acos(βt)+Bsin(βt))The complementary function of the given DE isf(t)=ert(Ccos(n2r2t+Dsin(n2r2))This is a system with a frequency of2πn2r2per units of time and aperiod ofn2r2units of time and an amplitudethat is decreasing with time.The effect of thef(t)in the differentialequation is to introduce dampinginto the oscillatory motion socausing it to decay.The coefficientertintroduced dampinginto the system, and sinceast,ert0    f(t)0,the vibrationsare ultimately damped out.The particular integral is of the formf(t)=Acos(pt)+Bsin(pt)f(t)=Apsin(pt)+Bpcos(pt)f(t)=Ap2cos(pt)Bp2sin(pt)Ap2cos(pt)Bp2sin(pt)+2r(Apsin(pt)+Bpcos(pt))+n2(Acos(pt)+Bsin(pt))=acos(pt)(Ap2+2rBp+An2)cos(pt)+(Bp22rAp+Bn2)sin(pt)=acos(pt)Comparing coefficientsAp2+2rBp+An2=aBp22rAp+Bn2=0A(n2p2)+2rBp=a(1)B(n2p2)2rAp=0(2)(1)×ByieldsAB(n2p2)+2rB2p=aB(3)(2)×AyieldsAB(n2p2)2rA2p=0(4)Subtract(4)from(3)2rA2+2rB2=aBA2(n2p2)+2rABp=aA(5)B2(n2p2)2rABp=0(6)Add(5)and(6)(A2+B2)(n2p2)=aA(7)2r(A2+B2)=aB(8)    A2+B2=aB2rInserting in(7)aB2r(n2p2)=aAB(n2p2)=2rA    B=2rAn2p2By(5)and(6)A+2rpBn2p2=an2p22rpAn2p2+B=04rp2A(n2p2)2+2rpBn2p2=0A(1+(2rp)2(n2p2))=an2p2A((n2p2)2+4r2p2(n2p2)2)=aA=a(n2p2)(n2p2)2+4r2p2B=2rn2p2A=2arp(n2p2)2+4r2p2f(t)=a(n2p2)(n2p2)2+4r2p2cos(pt)+2arp(n2p2)2+4r2p2sin(pt)f(t)=a(n2p2)2+4r2p2(2rp)2+(n2p2)cos(ptarctan(2rn2p2))=a(n2p2)2+4r2p2cos(ptarctan(2rn2p2))Thus, the Particular integral is of the formbcos(ptα),whereb2=a2(n2p2)2+4r2p2And the solution to the differential equation isx=ert(Ccos(n2r2t+Dsin(n2r2))+a(n2p2)2+4r2p2cos(ptarctan(2rn2p2))\displaystyle \frac{\mathrm{d}^2x}{\mathrm{d}t^2} + 2r\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)+ n^2x= a\cos(pt) \\ \textsf{Let}\, x = f(t) \\ f"(t) + 2rf'(t) + n^2f(t) = a\cos(pt)\\ \textsf{The complementary function is derived}\\ \textsf{when}\, f"(t) + 2rf'(t) + n^2f(t) = 0\\ \text{The auxiliary equation is}\\ m^2 + 2rm + n^2 = 0\\ m = \frac{-2r \pm \sqrt{4r^2 - 4n^2}}{2} = -r \pm \sqrt{r^2 - n^2}\\ \textsf{Since}\, n > r\\ m = -r \pm j\sqrt{n^2 - r^2}\\ \textsf{Recall that if the auxiliary equation is}\\ m = \alpha \pm j\beta, \, \textsf{the general solution can be}\\ \textsf{written as}\\ y = e^{\alpha t}(A\cos(\beta t) + B\sin(\beta t))\\ \therefore \textsf{The complementary function of the given DE is}\\ f(t) = e^{-rt}(C\cos(\sqrt{n^2 - r^2}t + D\sin(\sqrt{n^2 - r^2}))\\ \textsf{This is a system with a frequency of}\\ \frac{2\pi}{\sqrt{n^2 - r^2}}\, \textsf{per units of time and a}\\ \textsf{period of}\, \sqrt{n^2 - r^2} \, \textsf{units of time and an amplitude}\\ \textsf{that is decreasing with time.}\\ \textsf{The effect of the}\, f'(t)\, \textsf{in the differential}\\ \textsf{equation is to introduce damping}\\\textsf{into the oscillatory motion so}\\\textsf{causing it to decay.}\\ \textsf{The coefficient}\, e^{-rt} \, \textsf{introduced damping}\\ \textsf{into the system, and since}\\ \textsf{as}\, t \rightarrow \infty, e^{-rt} \rightarrow 0 \implies f(t)\rightarrow 0,\,\textsf{the vibrations}\\ \textsf{are ultimately damped out.}\\ \textsf{The particular integral is of the form}\\ f(t) = A\cos(pt) + B\sin(pt)\\ f'(t) = -Ap\sin(pt) + Bp\cos(pt)\\ f''(t) = -Ap^2\cos(pt) - Bp^2\sin(pt)\\ -Ap^2\cos(pt) - Bp^2\sin(pt) + 2r(-Ap\sin(pt) + Bp\cos(pt)) + n^2(A\cos(pt) + B\sin(pt)) = a\cos(pt)\\ (-Ap^2 + 2rBp + An^2)\cos(pt) + (-Bp^2 - 2rAp + Bn^2)\sin(pt) = a\cos(pt)\\ \textsf{Comparing coefficients}\\ -Ap^2 + 2rBp + An^2 = a\\ -Bp^2 - 2rAp + Bn^2 = 0\\ A(n^2 - p^2) + 2rBp = a\hspace{0.5cm}(1)\\ B(n^2 - p^2) - 2rAp = 0\hspace{0.5cm}(2)\\ (1) \times B \, \textsf{yields}\\ AB(n^2 - p^2) + 2rB^2p = aB\hspace{0.5cm}(3)\\ (2) \times A \, \textsf{yields}\\ AB(n^2 - p^2) - 2rA^2p = 0\hspace{0.5cm}(4)\\ \textsf{Subtract}\, (4) \, \textsf{from}\, (3)\\ 2rA^2 + 2rB^2 = aB\\ A^2(n^2 - p^2) + 2rABp = aA\hspace{0.5cm}(5)\\ B^2(n^2 - p^2) - 2rABp = 0\hspace{0.5cm}(6)\\ \textsf{Add}\, (5)\, \textsf{and}\, (6)\\ (A^2 + B^2)(n^2 - p^2) = aA\hspace{0.5cm}(7)\\ 2r(A^2 + B^2) = aB\hspace{0.5cm}(8)\\ \implies A^2 + B^2 = \frac{aB}{2r}\\ \textsf{Inserting in}\, (7)\\ \frac{aB}{2r}\cdot(n^2 - p^2) = aA\\ B(n^2 - p^2) = 2rA\\ \implies B = \frac{2rA}{n^2 - p^2}\\ \textsf{By}\, (5) \,\textsf{and} \, (6)\\ A + \frac{2rpB}{n^2 - p^2} = \frac{a}{n^2 - p^2}\\ -\frac{2rpA}{n^2 - p^2} + B = 0\\ -\frac{4rp^2 A}{(n^2 - p^2)^2} + \frac{2rpB}{n^2 - p^2} = 0\\ A\left(1 + \frac{(2rp)^2}{(n^2 - p^2)}\right) = \frac{a}{n^2 - p^2}\\ A\left(\frac{(n^2 - p^2)^2 + 4r^2p^2}{(n^2 - p^2)^2}\right) = a\\ A = \frac{a(n^2 - p^2)}{(n^2 - p^2)^2 + 4r^2p^2}\\ B =\frac{2r}{n^2 - p^2}\\ A = \frac{2arp}{(n^2 - p^2)^2 + 4r^2p^2}\\ \therefore f(t) = \frac{a(n^2 - p^2)}{(n^2 - p^2)^2 + 4r^2p^2}\cos(pt) + \frac{2arp}{(n^2 - p^2)^2 + 4r^2p^2}\sin(pt)\\ \begin{aligned} f(t) &= \frac{a}{(n^2 - p^2)^2 + 4r^2p^2}\sqrt{(2rp)^2 + (n^2 - p^2)}\cos\left(pt - \arctan\left(\frac{2r}{n^2 - p^2}\right)\right)\\ &=\frac{a}{\sqrt{(n^2 - p^2)^2 + 4r^2p^2}}\cos\left(pt - \arctan\left(\frac{2r}{n^2 - p^2}\right)\right) \end{aligned}\\ \textsf{Thus, the Particular integral is of the form}\\ b\cos(pt - \alpha),\, \textsf{where}\, b^2 = \frac{a^2}{(n^2 - p^2)^2 + 4r^2p^2}\\ \textsf{And the solution to the differential equation is}\\ x = e^{-rt}(C\cos(\sqrt{n^2 - r^2}t + D\sin(\sqrt{n^2 - r^2})) + \frac{a}{\sqrt{(n^2 - p^2)^2 + 4r^2p^2}}\cos\left(pt - \arctan\left(\frac{2r}{n^2 - p^2}\right)\right)\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS