Show that if n>r>0, the complementary function represents vibrations which are ultimately damped out. Further, prove that the particular integral is of the form bcos(pt-α), where b^2= a^2/[(n^2-p^2)^2 +4r^2p^2].
1
Expert's answer
2020-10-27T16:58:09-0400
dt2d2x+2r(dtdx)+n2x=acos(pt)Letx=f(t)f"(t)+2rf′(t)+n2f(t)=acos(pt)The complementary function is derivedwhenf"(t)+2rf′(t)+n2f(t)=0The auxiliary equation ism2+2rm+n2=0m=2−2r±4r2−4n2=−r±r2−n2Sincen>rm=−r±jn2−r2Recall that if the auxiliary equation ism=α±jβ,the general solution can bewritten asy=eαt(Acos(βt)+Bsin(βt))∴The complementary function of the given DE isf(t)=e−rt(Ccos(n2−r2t+Dsin(n2−r2))This is a system with a frequency ofn2−r22πper units of time and aperiod ofn2−r2units of time and an amplitudethat is decreasing with time.The effect of thef′(t)in the differentialequation is to introduce dampinginto the oscillatory motion socausing it to decay.The coefficiente−rtintroduced dampinginto the system, and sinceast→∞,e−rt→0⟹f(t)→0,the vibrationsare ultimately damped out.The particular integral is of the formf(t)=Acos(pt)+Bsin(pt)f′(t)=−Apsin(pt)+Bpcos(pt)f′′(t)=−Ap2cos(pt)−Bp2sin(pt)−Ap2cos(pt)−Bp2sin(pt)+2r(−Apsin(pt)+Bpcos(pt))+n2(Acos(pt)+Bsin(pt))=acos(pt)(−Ap2+2rBp+An2)cos(pt)+(−Bp2−2rAp+Bn2)sin(pt)=acos(pt)Comparing coefficients−Ap2+2rBp+An2=a−Bp2−2rAp+Bn2=0A(n2−p2)+2rBp=a(1)B(n2−p2)−2rAp=0(2)(1)×ByieldsAB(n2−p2)+2rB2p=aB(3)(2)×AyieldsAB(n2−p2)−2rA2p=0(4)Subtract(4)from(3)2rA2+2rB2=aBA2(n2−p2)+2rABp=aA(5)B2(n2−p2)−2rABp=0(6)Add(5)and(6)(A2+B2)(n2−p2)=aA(7)2r(A2+B2)=aB(8)⟹A2+B2=2raBInserting in(7)2raB⋅(n2−p2)=aAB(n2−p2)=2rA⟹B=n2−p22rABy(5)and(6)A+n2−p22rpB=n2−p2a−n2−p22rpA+B=0−(n2−p2)24rp2A+n2−p22rpB=0A(1+(n2−p2)(2rp)2)=n2−p2aA((n2−p2)2(n2−p2)2+4r2p2)=aA=(n2−p2)2+4r2p2a(n2−p2)B=n2−p22rA=(n2−p2)2+4r2p22arp∴f(t)=(n2−p2)2+4r2p2a(n2−p2)cos(pt)+(n2−p2)2+4r2p22arpsin(pt)f(t)=(n2−p2)2+4r2p2a(2rp)2+(n2−p2)cos(pt−arctan(n2−p22r))=(n2−p2)2+4r2p2acos(pt−arctan(n2−p22r))Thus, the Particular integral is of the formbcos(pt−α),whereb2=(n2−p2)2+4r2p2a2And the solution to the differential equation isx=e−rt(Ccos(n2−r2t+Dsin(n2−r2))+(n2−p2)2+4r2p2acos(pt−arctan(n2−p22r))
Comments