Question #141658
Solve (D^2-D)z = cos(3x-y)
1
Expert's answer
2020-11-02T20:03:05-0500
D(D1)z=cos(3xy)D(D-1)z=\cos(3x-y)

m1=0,m2=0,c1=0,c2=1m_1=0, m_2=0, c_1=0, c_2=1

Complementary function is f1(y)+exf2(y).f_1(y)+e^xf_2(y).

Let z=Asin(3xy)+Bcos(3xy)z=A\sin(3x-y)+B\cos(3x-y)



9Asin(3xy)9Bcos(3xy)-9A\sin(3x-y)-9B\cos(3x-y)-

(3Acos(3xy)3Bsin(3xy))=cos(3xy)-(3A\cos(3x-y)-3B\sin(3x-y))=\cos(3x-y)

9A+3B=09B3A=1\begin{matrix} -9A+3B=0 \\ -9B-3A=1 \end{matrix}

B=3A27A3A=1\begin{matrix} B=3A \\ -27A-3A=1 \end{matrix}

A=130A=-{1 \over 30}

B=110B=-{1 \over 10}

P.I.=130sin(3xy)110cos(3xy)P.I.=-\dfrac{1}{30}\sin(3x-y)-\dfrac{1}{10}\cos(3x-y)

Hence the complete solution is 

z=f1(y)+exf2(y)130sin(3xy)110cos(3xy)z=f_1(y)+e^xf_2(y)-\dfrac{1}{30}\sin(3x-y)-\dfrac{1}{10}\cos(3x-y)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS