"m_1=0, m_2=0, c_1=0, c_2=1"
Complementary function is "f_1(y)+e^xf_2(y)."
Let "z=A\\sin(3x-y)+B\\cos(3x-y)"
"-(3A\\cos(3x-y)-3B\\sin(3x-y))=\\cos(3x-y)"
"\\begin{matrix}\n -9A+3B=0 \\\\\n -9B-3A=1\n\\end{matrix}"
"\\begin{matrix}\n B=3A \\\\\n -27A-3A=1\n\\end{matrix}"
"A=-{1 \\over 30}"
"B=-{1 \\over 10}"
"P.I.=-\\dfrac{1}{30}\\sin(3x-y)-\\dfrac{1}{10}\\cos(3x-y)"
Hence the complete solution is
"z=f_1(y)+e^xf_2(y)-\\dfrac{1}{30}\\sin(3x-y)-\\dfrac{1}{10}\\cos(3x-y)"
Comments
Leave a comment