D(D−1)z=cos(3x−y) m1=0,m2=0,c1=0,c2=1
Complementary function is f1(y)+exf2(y).
Let z=Asin(3x−y)+Bcos(3x−y)
−9Asin(3x−y)−9Bcos(3x−y)−
−(3Acos(3x−y)−3Bsin(3x−y))=cos(3x−y)
−9A+3B=0−9B−3A=1
B=3A−27A−3A=1
A=−301
B=−101
P.I.=−301sin(3x−y)−101cos(3x−y) Hence the complete solution is
z=f1(y)+exf2(y)−301sin(3x−y)−101cos(3x−y)
Comments