Question #141660
Solve
dy/dx + xy=y^2×e^(x^2/2)×cosx
1
Expert's answer
2020-11-02T20:05:17-0500

y+xy=y2ex22cosxy' + xy = {y^2}{e^{\frac{{{x^2}}}{2}}}\cos x

Let

y=uvy=uv+uvy = uv \Rightarrow y' = u'v + uv'

Then

uv+uv+xuv=u2v2ex22cosxuv+u(v+xv)=u2v2ex22cosx\begin{array}{l} u'v + uv' + xuv = {u^2}{v^2}{e^{\frac{{{x^2}}}{2}}}\cos x\\ u'v + u\left( {v' + xv} \right) = {u^2}{v^2}{e^{\frac{{{x^2}}}{2}}}\cos x \end{array}

Let

v+xv=0dvdx=xvdvv=xdxlnv=x22v=ex22v' + xv = 0 \Rightarrow \frac{{dv}}{{dx}} = - xv \Rightarrow \frac{{dv}}{v} = - xdx \Rightarrow \ln v = - \frac{{{x^2}}}{2} \Rightarrow v = {e^{ - \frac{{{x^2}}}{2}}}

Then

uex22=u2ex2ex22cosxu'{e^{ - \frac{{{x^2}}}{2}}} = {u^2}{e^{ - {x^2}}}{e^{\frac{{{x^2}}}{2}}}\cos x

u=u2ex2ex2cosxu=u2cosx\begin{array}{l} u' = {u^2}{e^{ - {x^2}}}{e^{{x^2}}}\cos x\\ u' = {u^2}\cos x \end{array}

dudx=u2cosxduu2=cosxdx1u=sinxCu=1Csinx\begin{array}{l} \frac{{du}}{{dx}} = {u^2}\cos x\\ \frac{{du}}{{{u^2}}} = \cos xdx\\ - \frac{1}{u} = \sin x - C\\ u = \frac{1}{{C - \sin x}} \end{array}

y=uv=ex22Csinxy = uv = \frac{{{e^{ - \frac{{{x^2}}}{2}}}}}{{C - \sin x}}

Answer: y=ex22Csinxy = \frac{{{e^{ - \frac{{{x^2}}}{2}}}}}{{C - \sin x}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS