y′+xy=y2e2x2cosx
Let
y=uv⇒y′=u′v+uv′
Then
u′v+uv′+xuv=u2v2e2x2cosxu′v+u(v′+xv)=u2v2e2x2cosx
Let
v′+xv=0⇒dxdv=−xv⇒vdv=−xdx⇒lnv=−2x2⇒v=e−2x2
Then
u′e−2x2=u2e−x2e2x2cosx
u′=u2e−x2ex2cosxu′=u2cosx
dxdu=u2cosxu2du=cosxdx−u1=sinx−Cu=C−sinx1
y=uv=C−sinxe−2x2
Answer: y=C−sinxe−2x2
Comments