Question #142180
Solve
d^2y/dx^2 + 1/x×dy/dx= 12Inx/x^2
1
Expert's answer
2020-11-03T17:35:04-0500

Let us solve the equation d2ydx2+1xdydx=12lnxx2\frac{d^2y}{dx^2}+\frac{1}{x}\frac{dy}{dx}=12\frac{\ln x}{x^2}.


Let us multiply both part by xx: xd2ydx2+dydx=12lnxxx\frac{d^2y}{dx^2}+\frac{dy}{dx}=12\frac{\ln x}{x}. Then


ddx(xdydx)=12lnxx\frac{d}{dx}(x\frac{dy}{dx})=12\frac{\ln x}{x} and therefore,


xdydx=12lnxxdx=12lnx d(lnx)=6ln2x+C1x\frac{dy}{dx}=12\int \frac{\ln x}{x}dx=12\int \ln x\ d(\ln x)=6\ln^2x+C_1


Let us divide both part by xx:


dydx=6ln2xx+C1x\frac{dy}{dx}=6\frac{\ln^2x}{x}+\frac{C_1}{x}


Consequently,


y=6(ln2xx+C1x)dx=6ln2x d(lnx)+6C1dxx=2ln3x+6C1lnx+C2y=6\int(\frac{\ln^2x}{x}+\frac{C_1}{x})dx=6\int\ln^2x\ d(\ln x)+6C_1\int\frac{dx}{x}=2\ln^3 x+6C_1\ln x+C_2


Answer: y=2ln3x+6C1lnx+C2y=2\ln^3 x+6C_1\ln x+C_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS