By Convolution Theorem :
L−1{F1(s).F2(s)}=∫0tF1(u).F2(t−u)du
Here,we need to evaluate L−1{(s+1)(s+2)21}=L−1{s+11.(s+2)21} :
Step-1 : Take F1(s)=(s+1)1andF2(s)=(s+2)21
Step-2 : L−1{F1(s)}=L−1{(s+1)1}
Using the properties of inverse laplace transform : L−1{s−a1}=eatandL−1{sn1}=(n−1)!tn−1
∴L−1{F1(s)}=L−1{(s+1)1}=e−1.t=e−t=f1(t)and
L−1{F2(s)}=L−1{(s+2)21}=e−2tL−1{s21}
⟹L−1{F2(s)}=e−2t.(2−1)!t2−1=e−2t.1!t=te−2t=f2(t)
By using the convolution formula,we have -
L−1{(s+1)(s+2)21}=L−1{s+11.(s+2)21}
=∫0tf1(u).f2(t−u)du
=∫0te−u.(t−u).e−2(t−u)du
=∫0t(t−u).e−u−2t+2udu
=∫0t(t−u).eu−2tdu=e−2t∫0t(t−u)eudu
=e−2t[t.∫0teudu−∫0tueudu]
=e−2t[t.[eu]0t−[u.∫eudu−∫(dud(u).∫eudu)du]0t]
=e−2t[t.[et−e0]−[u.eu−∫(1.eu)du]0t]
=e−2t[t.[et−1]−[ueu−eu]0t]
=e−2t[tet−t−[(tet−et)−(0−e0)]]
=e−2t[tet−t−[(tet−et)+1)]]
=e−2t[tet−t−tet+et−1]=e−2t(et−t−1) .............Ans.
Comments