Question #133960
Find l^-1 {1/(s+1)(s+2)^2 by using convolution theorem
1
Expert's answer
2020-09-21T15:02:31-0400

By Convolution Theorem :


L1{F1(s).F2(s)}=0tF1(u).F2(tu)  du\\ L^{-1}\{F_{1}(s).F_{2}(s)\}=\int_0^tF_{1}(u).F_{2}(t-u) \;du


Here,we need to evaluate L1{1(s+1)(s+2)2}=L1{1s+1.1(s+2)2}L^{-1}\{\dfrac{1}{(s+1)(s+2)^2}\}=L^{-1}\{\dfrac{1}{s+1}.\dfrac{1}{(s+2)^2}\} :


Step-1 : Take F1(s)=1(s+1)  and  F2(s)=1(s+2)2F_1(s)=\dfrac{1}{(s+1)} \;and\; F_2(s)=\dfrac{1}{(s+2)^2}


Step-2 : L1{F1(s)}=L1{1(s+1)}L^{-1}\{F_1(s)\}=L^{-1}\{\dfrac{1}{(s+1)}\}

Using the properties of inverse laplace transform : L1{1sa}=eat    and    L1{1sn}=tn1(n1)!L^{-1}\{\dfrac{1}{s-a}\}=e^{at}\;\;and\;\;L^{-1}\{\dfrac{1}{s^n}\}=\dfrac{t^{n-1}}{(n-1)!}


L1{F1(s)}=L1{1(s+1)}=e1.t=et=f1(t)  and\therefore L^{-1}\{F_1(s)\}= L^{-1}\{\dfrac{1}{(s+1)}\}=e^{-1.t}=e^{-t}=\mathbf{f_1(t)}\;and



L1{F2(s)}=L1{1(s+2)2}=e2tL1{1s2}L^{-1}\{F_2(s)\}=L^{-1}\{\dfrac{1}{(s+2)^2}\}=e^{-2t}L^{-1}\{\dfrac{1}{s^2}\}


    L1{F2(s)}=e2t.t21(21)!=e2t.t1!=te2t=f2(t)\implies L^{-1}\{F_2(s)\}=e^{-2t}.\dfrac{t^{2-1}}{(2-1)!}=e^{-2t}.\dfrac{t}{1!}=te^{-2t}=\mathbf{f_2(t)}


By using the convolution formula,we have -


L1{1(s+1)(s+2)2}=L1{1s+1.1(s+2)2}L^{-1}\{\dfrac{1}{(s+1)(s+2)^2}\}=L^{-1}\{\dfrac{1}{s+1}.\dfrac{1}{(s+2)^2}\}


=0tf1(u).f2(tu)du=\int_0^t\mathbf{f_1(u).f_2{(t-u)du}}


=0teu.(tu).e2(tu)du=\int_0^te^{-u}.(t-u).e^{-2(t-u)}du


=0t(tu).eu2t+2udu=\int_0^t(t-u).e^{-u-2t+2u}du


=0t(tu).eu2tdu=e2t0t(tu)eudu=\int_0^t(t-u).e^{u-2t}du=e^{-2t}\int_0^t(t-u)e^udu


=e2t[t.0teudu0tueudu]=e^{-2t}[t.\int_0^te^udu-\int_0^tue^udu]


=e2t[t.[eu]0t[u.eudu(ddu(u).eudu)du]0t]=e^{-2t}\bigg[t.\bigg[e^u\bigg]_0^t-\bigg[u.\int e^udu-\int \bigg(\dfrac{d}{du}(u).\int e^udu\bigg)du\bigg]_0^t\bigg]


=e2t[t.[ete0][u.eu(1.eu)du]0t]=e^{-2t}\bigg[t.[e^t-e^0]-\bigg[u.e^u-\int\bigg(1.e^u\bigg)du\bigg]_0^t\bigg]


=e2t[t.[et1][ueueu]0t]=e^{-2t}\bigg[t.[e^t-1]-\bigg[ue^u-e^u\bigg]_0^t\bigg]


=e2t[tett[(tetet)(0e0)]]=e^{-2t}\bigg[te^t-t-\bigg[(te^t-e^t)-(0-e^0)\bigg]\bigg]


=e2t[tett[(tetet)+1)]]=e^{-2t}\bigg[te^t-t-\bigg[(te^t-e^t)+1)\bigg]\bigg]


=e2t[tetttet+et1]=e2t(ett1)=e^{-2t}\bigg[te^t-t-te^t+e^t-1\bigg]=e^{-2t}(e^t-t-1) .............Ans.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS