Given differential equation is (D2−6DD′+9D′2)z=12x2+36xy
where D=dxd,D′=dyd .
⟹(D−3D′)2z=12x2+36xy
So, Auxiliary equation is (D−3D′)2=0⟹D−3D′=0,D−3D′=0 .
Hence, Complementary function (C.F.) = ϕ1(y+3x)+xϕ2(y+3x) .
Particular Integral (P.I.) = (D−3D′)21(12x2+36xy)
=D21(1−D3D′)−2(12x2+36xy)
=(1+2D3D′+3(D3D′)2+4(D3D′)3+…)∫∫(12x2+36xy)dxdx
=(1+6DD′+27(DD′)2+108(DD′)3+…)[x4+6x3y]
=x4+6x3y+D6(6x3)
=x4+6x3y+9x4=10x4+6x3y
Hence, solution of given differential equation is
z = C.F. + P.I.
⟹z=ϕ1(y+3x)+xϕ2(y+3x)+10x4+6x3y
Comments