Question #133898
d^2-6dd'+9d'^2=12x^2+36xy
1
Expert's answer
2020-09-20T18:23:40-0400

Given differential equation is (D26DD+9D2)z=12x2+36xy(D^2-6DD'+9D'^2)z=12x^2+36xy

where D=ddx,D=ddyD = \frac{d}{dx}, D' = \frac{d}{dy} .

    (D3D)2z=12x2+36xy\implies (D-3D')^2 z = 12 x^2 + 36 xy

So, Auxiliary equation is (D3D)2=0    D3D=0,D3D=0(D-3D')^2 = 0 \implies D-3D' = 0 , D - 3D' = 0 .

Hence, Complementary function (C.F.) = ϕ1(y+3x)+xϕ2(y+3x)\phi_1(y+3x) + x \phi_2(y+3x) .

Particular Integral (P.I.) = 1(D3D)2(12x2+36xy)\frac{1}{(D-3D')^2} (12x^2 + 36 xy)

=1D2(13DD)2(12x2+36xy)= \frac{1}{D^2} \left(1-\frac{3D'}D{}\right)^{-2} (12x^2+36xy)

=(1+23DD+3(3DD)2+4(3DD)3+)(12x2+36xy)dxdx= \left(1+2\frac{3D'}{D}+3\right(\frac{3D'}{D}\left)^2+4\right(\frac{3D'}{D}\left)^3+…\right) \int\int(12x^2+36xy) dxdx

=(1+6DD+27(DD)2+108(DD)3+)[x4+6x3y]= \left(1+6\frac{D'}{D}+27\right(\frac{D'}{D}\left)^2+108\right(\frac{D'}{D}\left)^3+…\right) \left[ x^4 + 6 x^3 y \right]

=x4+6x3y+6D(6x3)= x^4 + 6 x^3 y + \frac{6}{D} (6x^3)

=x4+6x3y+9x4=10x4+6x3y= x^4 + 6x^3 y + 9 x^4 \\ = 10 x^4 + 6x^3 y

Hence, solution of given differential equation is

zz = C.F. + P.I.

    z=ϕ1(y+3x)+xϕ2(y+3x)+10x4+6x3y\implies z = \phi_1(y+3x)+x\phi_2(y+3x) + 10 x^4 + 6x^3 y


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS