Question #133850
Solve dy/dx^2-y=0 in series
1
Expert's answer
2020-09-20T18:20:06-0400
yy=0y''-y=0

Assume that n=0anxn\displaystyle\sum_{n=0}^\infin a_nx^n is a solution. Then you have


y=n=1nanxn1, y=n=2n(n1)anxn2y'=\displaystyle\sum_{n=1}^\infin na_nx^{n-1},\ y''=\displaystyle\sum_{n=2}^\infin n(n-1)a_nx^{n-2}

n=2n(n1)anxn2=n=0anxn\displaystyle\sum_{n=2}^\infin n(n-1)a_nx^{n-2}=\displaystyle\sum_{n=0}^\infin a_nx^{n}

n=0(n+2)(n+1)an+2xn=n=0anxn\displaystyle\sum_{n=0}^\infin(n+2)(n+1)a_{n+2}x^{n}=\displaystyle\sum_{n=0}^\infin a_nx^{n}

By equating coefficients, we have


(n+2)(n+1)an+2=an(n+2)(n+1)a_{n+2}=a_n

We obtain the recursion formula


an+2=an(n+2)(n+1),n0a_{n+2}=\dfrac{a_n}{(n+2)(n+1)}, n\geq0

a0,a1a_0, a_1

a2=a012,     a3=a123a_{2}=\dfrac{a_0}{1\cdot2} , \ \ \ \ \ a_{3}=\dfrac{a_1}{2\cdot3}


a4=a01234,     a5=a12345a_{4}=\dfrac{a_0}{1\cdot2\cdot3\cdot4} , \ \ \ \ \ a_{5}=\dfrac{a_1}{2\cdot3\cdot4\cdot5}

                                 \vdots\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots

a2k=a0(2k)!,     a2k+1=a1(2k+1)!a_{2k}=\dfrac{a_0}{(2k)!} , \ \ \ \ \ a_{2k+1}=\dfrac{a_1}{(2k+1)!}

Thus, we can represent the general solution as the sum of two series—one for the

even-powered terms with coefficients in terms of a0a_0 and one for the odd-powered

terms with coefficients in terms of a1a_1


y=a0k=0x2k(2k)!+a1k=0x2k+1(2k+1)!y=a_0\displaystyle\sum_{k=0}^\infin \dfrac{x^{2k}}{(2k)!}+a_1\displaystyle\sum_{k=0}^\infin \dfrac{x^{2k+1}}{(2k+1)!}

The solution has two arbitrary constants, and as we would expect in the

general solution of a second-order differential equation.


y=C1ex+C2exy=C_1e^x+C_2e^{-x}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS