Question #127131
Find the Laplace transform of the piecewise continuous function
f(x) = {1, 0 ≤ t < 1}
{-3e^-t, t ≥ 1}
1
Expert's answer
2020-07-26T17:45:39-0400

F(s)=0etsf(t)dt==01etsf(t)dt+1etsf(t)dt==01ets1dt+1ets(3et)dt==1ess3es1s+1;F(s)=\int\limits_0^\infty e^{-t\cdot s}\cdot f(t)\,dt=\\ =\int\limits_0^1 e^{-t\cdot s}\cdot f(t)\,dt +\int\limits_1^\infty e^{-t\cdot s}\cdot f(t)\,dt=\\ =\int\limits_0^1 e^{-t\cdot s}\cdot 1\cdot\,dt +\int\limits_1^\infty e^{-t\cdot s}\cdot (-3\cdot e^{-t})\,dt=\\ =\frac{1-e^{-s}}{s}-\frac{3\cdot e^{-s-1}}{s+1} ;


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS