F(s)=∫0∞e−t⋅s⋅f(t) dt==∫01e−t⋅s⋅f(t) dt+∫1∞e−t⋅s⋅f(t) dt==∫01e−t⋅s⋅1⋅ dt+∫1∞e−t⋅s⋅(−3⋅e−t) dt==1−e−ss−3⋅e−s−1s+1;F(s)=\int\limits_0^\infty e^{-t\cdot s}\cdot f(t)\,dt=\\ =\int\limits_0^1 e^{-t\cdot s}\cdot f(t)\,dt +\int\limits_1^\infty e^{-t\cdot s}\cdot f(t)\,dt=\\ =\int\limits_0^1 e^{-t\cdot s}\cdot 1\cdot\,dt +\int\limits_1^\infty e^{-t\cdot s}\cdot (-3\cdot e^{-t})\,dt=\\ =\frac{1-e^{-s}}{s}-\frac{3\cdot e^{-s-1}}{s+1} ;F(s)=0∫∞e−t⋅s⋅f(t)dt==0∫1e−t⋅s⋅f(t)dt+1∫∞e−t⋅s⋅f(t)dt==0∫1e−t⋅s⋅1⋅dt+1∫∞e−t⋅s⋅(−3⋅e−t)dt==s1−e−s−s+13⋅e−s−1;
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments